

CODING PROJECTS IN FLUTTER
A Hands-On, Project-Based Introduction to Mobile App

Development

EDWARD THORNTON

© Copyright 2021 - All rights reserved.

It is not legal to reproduce, duplicate, or transmit any part of this document in
either electronic means or in printed format. Recording of this publication is strictly
prohibited and any storage of this document is not allowed unless with written
permission from the publisher except for the use of brief quotations in a book
review.

Contents

1. Welcome

2. Basic Terminology
Mobile Applications and Device Platforms
Mobile App Development Methodologies
Cross-Platform Development
Early Cross-Platform Development Tools
Modern Cross-Platform Development Tools
Conclusion

3. Introduction To Dart
Dart: The Language
Dart Native (machine code JIT and AOT)
Platforms
Dart SDK
Flutter Development
Advanced Dart With Examples
Conclusion

4. Introduction To Flutter
What is Flutter?
Flutter Source Code
Flutter Framework
Flutter Release Process
Flutter Channels
Which Channel To Use
How to Change Channels
Conclusion

5. Installing Flutter 2.2
Developing on a PC for iOS
Installing Flutter 2.2
Software Needed
Introduction: Android Studio
Visual Studio Code

Mac Platform Setup
Conclusion

6. Flutter Project 1 - Build Your First App
1. Creating Your Flutter Project
2. Set The Package Name
3. Exploring the Project
4. Understanding the Default App and Code
5. Running the App

7. Flutter Project 2 - Build a Song App
1. Packages To Be Used
3. Playing Music Using Internet and Assets
4. Getting Music Files from Our External Storage
5. Setting Up the Audio
6. Creating a Control Panel
7. SongDuration
8. SongProgress
Conclusion

8. Flutter Project 3 - Build a Login UI
Prerequisites
1. Definition of Assets
2. Build the UI
Conclusion

9. Flutter Project 4 - Build a Name Generator
1. Create a Suitable Flutter Environment
2. Create the Starter Flutter App
3. Use a Third-Party Package
4. Add a Stateful Widget
5. Create an Infinite Scrolling ListView
6. Add Icons to the List
7. Activating Interactivity
8. Navigating to a New Screen
9. Modify the UI With Themes
Conclusion

10. Flutter Project 5 - Build an Ecommerce App
1. Set Up Your Environment
2. Create Your Flutter Project
3. Import Your Package

4. Create Your Main.dart
Conclusion

11. FlutterFlow Project 1 - Build a Threefold Pricing Scroll
1. Set Up Your Environment
2. Create a New Page
3. Begin To Reposition Your Widgets To Build
Conclusion

12. FlutterFlow Project 2 - Build a Chat App
Prerequisite
Conclusion

13. Flutter and HTTP
Asynchronous Communication
HTTP
Tools
Methods
URL
Query Parameters
Matrix Parameters
Path Parameters
Status
Header
Body
Request
Flutter and HTTP
Illustration
Conclusion

14. Debugging
Flutter Debugging
Code Implement
Debugging Tools
Debug mode assertions
Conclusion

15. Other Considerations
HTTP Communication
Data Considerations
Conclusion

16. Publishing Your App

How to Release Your Flutter App for iOS
How to Release Your Flutter App for Android

Final Words
References

ONE

Welcome

I wrote this book to broaden my own knowledge of Flutter, and
although I still have a way to go, I learned a lot in the process of
writing this book. Within these pages, I have tried my best to share
all I have learned with you, and I hope you and others who read this
book find it all helpful.

Flutter is a simple, high-performance framework based on Dart
language. It provides excellent performance for the simple reason
that it renders UI directly on Canvas rather than through the native
framework. I find it all really fascinating, and I've tried my best to
capture what I feel are the essentials of this vast subject in this book.
Since it is impossible to condense all there is to Flutter in one book,
I’ve also shared links to websites and resources you can visit for any
further information you might need.

In the first half of the book, you'll learn basic programming concepts,
such as variables, lists, classes, loops, and algorithms, and you’ll be
introduced to the Dart language as well as Flutter. You will also learn
how to install Flutter and its plugins and how to put your knowledge
into practice by developing Flutter projects.

In the second half, you will learn about FlutterFlow, a relatively
recent online low-code builder for native mobile apps that run on
both iOS and Android. You will also learn how to integrate a
FlutterFlow into your projects and how to test your code safely. I will

introduce you to Flutter and HTTP, teaching you how to debug safely
and all the steps you’ll need to take before publishing your app.

As you work through the book, you'll learn how to use powerful
Flutter libraries and tools, generate interactive data visualizations,
create and customize web apps and deploy them safely online, and
how to deal with mistakes and errors so you can solve your own
programming problems.

All of these projects have been well thought out, and I have tried to
present them in such a way that learning the subject matter and
implementing it is an enjoyable pastime, rather than an onerous task
to be completed. That being said, I should also point out that despite
my best intentions, some of the information in this book may turn out
to be incorrect. I tried my best to be as accurate as possible, but the
truth is that I still have much to learn about Flutter. Anything wise in
these pages you should credit to the many experts who preceded
me on this subject. Anything foolish, assume it is my error.

I have also tried to be objective throughout this book, but it is
possible that my personal opinions may have shone through in a few
pages. Please, if you come across these, try not to take them too
seriously. There is no one right way to understand and build with
Flutter; this book describes the best way I know.

Happy reading, friend!

TWO

Basic Terminology

A mobile application (or “mobile app”) is a computer program or
software application that runs on a mobile device such as a phone,
tablet, or smartwatch. A typical mobile application uses a network
connection to work with remote computing resources, and mobile
application development is the process of designing software
applications that operate on a mobile device. The mobile
development process entails building installable software bundles
(code, binaries, assets, and so on), integrating backend services like
data access through an API, and testing the app on target devices.

Writing mobile apps appears simple, but the sheer amount of
platforms available makes it difficult. Your app might run on an
iPhone, an iPad, or an Android phone, among other devices.
Additionally, these platforms are subject to rapid change as new
gadgets enter the market frequently.

Mobile Applications and Device Platforms
In today’s market for smart devices, two major platforms reign
supreme over all others. These are Apple’s iOS platform and
Google’s Android. The iOS platform is the operating system that runs
on Apple's popular iPhone handsets. Many tech companies,

alongside Google, use the Android operating system to construct
their own smart devices.

While there is some resemblance in terms of app development
between the two platforms, designing for iOS vs. designing for
Android requires the use of different software development kits
(SDKs) and development tool chains. Also, Apple utilizes iOS solely
for all of its devices, but Google makes Android accessible to most
other companies—provided these companies meet certain criteria,
such as shipping devices with particular Google applications.
Regardless of their differences, modern developers create apps for
use on millions of smart devices today leveraging these two
platforms.

The goal of this chapter is to provide you with a concise introduction
to the world of mobile application development, as well as to get you
familiarized with the problem of cross-platform development and how
different developers have attempted to tackle it through the years.
Before we get started, let's go through some terminology you will
encounter over the course of this book.

Compiler

A computer program is a set of instructions that tells the computer
how to do something. High-level programming languages are used
to create the majority of computer applications. As a result, the
computer is unable to comprehend these programs, and they are
converted to a machine-readable language. This conversion is
carried out by a compiler , which is a piece of software that
translates the source code into machine code.

An assembler and machine code can be used to create a very
rudimentary compiler. You can use the initial compiler to develop a
more sophisticated one (then use a second, more refined one to
write another, even more sophisticated one) once you have software
that can translate language into binary instructions.

A native compiler translates a program's source code into machine
code for the platform it's running on. The CPU will not need to
translate the code in order to interpret and execute it. A non-native
compiler transforms the source code into a more generic version
that can be run on a variety of platforms. To be interpreted and
executed by the CPU, the code will need to be translated.

Widgets

A widget is a graphical user interface (GUI) element that displays
information or allows a user to interact with the operating system or
an application in a specific way. Icons, pull-down menus, buttons,
selection boxes, progress indicators, checkboxes, scroll bars,
windows, window edges (which allow you to resize the window),
toggle buttons, forms, and a variety of other devices for displaying
information and inviting, accepting, and responding to user actions
are all examples of widgets.

“Widgets” also refers to the little programs that are developed to
define how a particular widget looks, operates, and responds to user
actions in programming. Most operating systems provide a set of
ready-to-use widgets that a programmer can use to customize an
application's behavior, but it is also possible to develop new widgets.

Algorithm

A set of instructions used to solve a problem is referred to as an
algorithm . It's the cognitive process of a computer.

Coding

Coding is the process of creating computer instructions. Programs,
like people, speak a variety of languages. Roblox, for example,

makes use of the Lua programming language, whereas Minecraft
was created using Java.

Languages

Coding languages are used by computers to understand what
people want them to do. People communicate with computers in
languages like C++ or Java, just as they communicate with each
other in English or Japanese. JavaScript and Python are two of the
most popular coding languages.

JavaScript

JavaScript (or Java) is a multi-platform computer programming
language with a lot of capabilities. It's used in a wide range of
professional and commercial applications, including every Android
app as well as the Android operating system. Markus Persson
developed Minecraft entirely in Java. Gmail was built in Java,
because it has a high performance rate and a solid web architecture.

Python

Python is another programming language that is currently gaining in
popularity with each new library introduced to its collection. It takes
care of everything from web development and game creation, to
machine learning and artificial intelligence. Python is also renowned
for having a simpler syntax than most other programming languages,
including Java and C++.

Mobile App Development Methodologies

When creating mobile applications, there are four key development
methodologies to consider.

Native Apps for Mobile
Mobile Hybrid Applications
Progressive Web Applications (PWAs)
Cross-Platform Mobile Applications

Each of these techniques to mobile app development has its own set
of benefits and drawbacks. As a developer, before you decide the
best development method for your projects from the above, you
should assess the intended user experience, native features
required by the application, your budget allocation, time estimate,
and available resources for the upkeep of the app. This way, you will
be able to make a more informed decision and maximise your
chosen technique to effectively execute your design.

Native Mobile Applications

Native apps are created in the platform owner's programming
language and frameworks. They run directly on the device's
operating system, such as iOS or Android.

Hybrid Mobile Applications

Hybrid apps are bundled as app installation packages and
constructed with conventional web technologies like JavaScript,
CSS, and HTML5. Hybrid apps, unlike native apps, run on a 'web
container,' which includes a browser runtime as well as a bridge to
native device APIs via Apache Cordova.

Progressive Web Applications

Progressive web apps (PWAs) are web applications that leverage a
set of browser features to give an 'app-like' user experience, such as
working offline, running a background process, and providing a link
to the device's home screen. By avoiding app store delivery and
installation, PWAs provide an alternative to standard mobile app
development by taking advantage of a set of browser features.

Cross-Platform Development
The process of developing an app that runs across many platforms
is referred to as cross-platform development . Cross-platform
mobile apps can be developed in a variety of programming
languages and frameworks, but they are compiled into native apps
that run directly on the device's operating system. The resulting apps
can be used on both Android and iOS.

Prior to the creation of cross-platform mobile applications,
developers had to design individual application codes for each
platform in order to develop standards-compliant applications. These
are referred to as native apps. The process was quite tasking,
because each coding process required a codebase (and a different
programmer) for iOS (iPhone) as well as separate codebase (and
developer) for Android. Objective-C and Swift are the standard
programming languages for native iOS, while Java and Kotlin work
best for native Android development.

As you may expect, this development strategy complicates things for
a variety of reasons.

Keeping two sets of code in sync is inconvenient. Simply
said, whenever a developer modified the iPhone code for
whatever reason, they had to change the Android code to
match.
It was too expensive, because you needed developers with
multiple skill sets.

The app for one platform could seem very different from the
app for the other platforms.

Early Cross-Platform Development Tools
Various IT teams began the race to develop their firms’ mobile
applications as fast and efficiently as possible, a task complicated by
the need to support both iOS and Android devices. As a result, many
businesses began to work on cross-platform mobile development
tools, which would allow them to create apps for both iOS and
Android using the same code base. They immediately separated the
development tools into two categories: those that used native
libraries and those that did not.

Native Libraries-Based Development Tools

On top of Apple and Google's original SDKs, these tools produced a
“Unified” API. Many of these development tools are still available,
such as Xamarin, Appcelerator, and Nativescript. The difficulty with
these kinds of apps is that the “Unified API” doesn't cover
everything, leaving developers with a lot of work to do, such as
writing platform-specific code. These apps also make use of the
SDK's Widgets. As a result, the apps may differ in appearance due
to the use of various Widgets from various sources.

Tools That Didn't Rely on Native Libraries

These development tools adopted a unique methodology. The
majority of them attempted to avoid using the SDK by writing code
that ran in the platform’s browser. This allowed the programmer to
take advantage of many of the HTML5 and JavaScript features that
were already available. The program would be displayed on a web
browser. A “webview” is a browser embedded into a mobile
application, resulting in a hybrid app. Using a webview, mobile apps

can be developed using web technologies (HTML, JavaScript, CSS,
and so on) while still being packaged as a native app and distributed
through the app store.

The issue with these applications is that they are slow. They’re not
executing in compiled machine code; instead, they use a disguised
web browser. Many of these development tools are still in use, such
as Cordova and PhoneGap.

Modern Cross-Platform Development Tools
Today, based on extensive market research and real-world examples
from prominent organizations, several players have emerged to
make your job easier and give your project a competitive edge.
These are some of the major leaders in the field of mobile app
development tools:

Ionic

Drifty Co.’s Max Lynch, Ben Sperry, and Adam Bradley launched
Ionic , a comprehensive open-source SDK for hybrid mobile app
development, in 2013. Ionic apps are written in web-standard
languages such as HTML, CSS, and JavaScript. As a result, if you
can create a basic web app, you can build with Ionic as well. You
can create a native iOS or Android app, a native desktop app, or a
web app using Ionic, all from a single codebase.

Iconic enables developers to create high-performing iOS and
Android apps, thanks to strong community support and large libraries
of native components. With Ionic's web usage metrics, designers are
compelled to use this architecture to build local applications and
progressive web applications. It is an open-source framework that
allows a programmer to use a library of portable upgraded reusable
UI segments, motions, and devices to intelligently connect with
applications in a short time span.

React Native

React Native is a JavaScript framework that allows the programmer
to create native apps for iOS and Android. It’s built on the React
JavaScript library, which was created by Facebook. It was released
back in March of 2015 and very quickly gained popularity among
developers. React Native enables you to write modules in a variety
of languages, including C++, Java, Swift, Objective-C, and Python.
The nicest thing is that it's built on JavaScript, which the majority of
developers are already familiar with. Furthermore, because React
Native is an open-source framework that allows you to reuse the
codebase for application advancement, planning the program with it
is fast and pleasant for the designers.

The idea of developing apps for all platforms using only one model
seems far-fetched. React Native meets this need by speeding up the
process of developing apps for numerous platforms, because it
allows much of the code to be reused across them. It’s popular
because it works equally well on mobile and non-mobile websites.
React Native is similar to React, but instead of using web
components as building blocks, it employs native components.
Facebook, Facebook Ads, Walmart, Bloomberg, Instagram,
SoundCloud Pulse, Townske, Gyroscope, and Wix are among the
most well-known React Native apps.

Components in React Native are pure, side-effect-free functions that
return the state of the views at any given time. As a result, writing
state-dependent views is easy because you don't have to worry
about updating the view when the state changes—the framework
does it for you. Because the UI is produced using genuine native
views, the end user experience isn't as poor as with alternative
solutions that simply put a web component inside a WebView.

Developers employ component objects to create user interfaces.
These components may have software that allows them to respond

to user input and provide an interactive user interface. The way it
works, React Native runs in two parts:

The user interface (UI): This component shows the user
interface and receives user input.
The JavaScript interpreter: The JavaScript application
code is interpreted and executed. A bridge connects the two
halves.

Pros

The React Native framework is a fantastic tool. It has the
distinct advantage of being the more established player,
having been released in 2015.
Because it comes with so many ready-to-use components,
React Native is an easy-to-learn and tremendously
productive tool.

Cons

React Native apps aren’t fully compiled in the native
environment.
Although much of the deployed code is native, your section
of the app runs as embedded JavaScript and communicates
with the native components via a bridge. This isn’t the best
option in terms of performance.

Google Flutter

Flutter is a Google-developed open-source UI software
development kit that allows developers to construct native-looking

iOS and Android apps using a single codebase. Google introduced
Flutter in 2017, and it has since been used to create over 100,000
apps. It is used to create cross-platform applications from a single
codebase for Android, iOS, Linux, Mac, Windows, Google Fuchsia,
and the web.

Flutter is causing a stir, because it offers a novel approach to cross-
platform mobile app development. It has a large number of UI
components and gadgets, as well as a powerful delivery motor,
allowing designers to make changes to the app with ease. Instead of
using the native iOS or Android UI widgets that come with their
retrospective SDKs, you write user interfaces using Google Flutter
user interface widgets.

Flutter is made up of two main components:

An SDK (Software Development Kit): A set of tools that
will assist you in the development of your applications. Tools
for compiling your code into native machine code are also
included here (for iOS and Android).
A Framework (Widget-based UI Library): A set of
customizable reusable user interface elements (buttons, text
inputs, sliders, and so on).

It uses the same Widgets from the same library, and so a Flutter app
created with Flutter Widgets will look the same on iOS and Android.
Many widgets are included in Flutter, including those that mirror
Google's Material design and those that mimic Apple's iOS design.

These widgets are drawn using Google Flutter's own high-
performance rendering engine and are meant to function across all
mobile platforms. These widgets can also be customized. You create
the application code in Google's Dart language, which is turned into
machine code ahead of time for native-like performance, giving it an
edge over React Native. Here, between the user interface and the
application code, there is no link. The one obvious disadvantage is
that developers will have to learn Dart rather than reusing their
existing JavaScript skills.

Pros

Easy to use and learn. Flutter is a contemporary framework
that makes it easier to design mobile apps. If you’ve worked
with Java, Swift, or React Native, you’ll see how unique
Flutter is. You can make a true native app without writing any
code.
You can make changes to your code and see the
consequences right away. It's known as Hot-Reload. After
you save, it simply takes a few moments for the application
to be updated.
Because you don't have to design and manage two mobile
apps, developing a mobile app with Flutter is less expensive.
You can also quickly personalize widgets offered by Flutter to
build a valuable user interface for your consumers.
Documentation is excellent. Flutter’s documentation has a lot
to offer, and everything is quite detailed with simple
examples for fundamental use cases.
Android Studio and VS Code both support it. Android Studio
is a full-featured program that includes everything you need.
VS Code is a little program with a lot of customization
options thanks to marketplace plugins.
Flutter offers a command-line utility called Flutter Doctor that
can help developers get started. It checks which tools are
installed and which need to be configured on the local
machine. You can proceed with constructing a new Flutter
app after the Flutter Doctor command is satisfied. To get
started with Flutter, there's a separate page that explains
how to set up the editors. Once this is done, you can
proceed to create a new Flutter app from the command line.

Conclusion

When it comes to reducing application development costs,
development time, and market time, a large number of SMEs, new
businesses, and even multimillion-dollar ventures are opting for
cross-stage models for their next application development project.
Google Flutter appears to be the best solution right now if you want
to develop performant cross-platform mobile web applications.

THREE

Introduction To Dart

Dart is a Google-created general-purpose programming language
released in 2011. The technical envelope of a language—that is, the
collective decisions made during development that influence the
language’s capabilities and strengths—defines it. Dart is optimized
for client development, prioritizing both development (sub-second
stateful hot reload) and high-quality production experiences across a
wide range of compilation targets (web, mobile, and desktop). Dart is
an open-source general-purpose programming language with a
syntax comparable to that of C.

It's a C-style object-oriented language that supports programming
concepts such as interfaces and classes. It's one of the best
languages for creating quick apps on any platform, because it's
client-oriented. Its purpose is to provide the most productive
programming language for cross-platform development, as well as a
versatile runtime platform for app frameworks.

Dart is also the backbone of Flutter. Dart not only powers Flutter
apps with its language and runtimes, but it also helps developers
with formatting, analyzing, and testing code. Data structures like
arrays, generics, and optional typing can be replicated with Dart
collections.

The following data types are supported by the Dart language.

Numbers: Used to represent integer and double numeric
literals.
Strings: A string is a collection of characters. Single or
double quotations are used to specify string values.
Booleans: The bool keyword in Dart is used to represent
Boolean values such as true and false. It is also used to
represent a collection of objects in lists and maps.
Decision Making and Loops: Before the instructions are
executed, a decision making block examines a condition. If ,
If..else , and switch statements are all supported in Dart.
Loops are used to repeatedly run a section of code until a
certain condition is met. Dart supports loops like for , for..in ,
while , and do..while . They can be defined as a method,
similar to our void function, and they operate like first-class
objects, which means they can be saved in variables,
supplied as arguments, and returned as a normal function
return value.

Dart: The Language
The Dart programming language is type-safe: it employs static type
checking to ensure that a variable's value always corresponds to the
static type of the variable. This is referred to as “sound typing.” Dart's
typing system is also versatile, allowing for the use of a dynamic type
mixed with runtime checks, which can be beneficial for
experimentation or for code that requires a lot of dynamic behavior.

If you execute a Dart program without null safety, the call to.length
raises a NoSuchMethodError error. The Null class has no “length”
getter, and the null value is an instance of it.

Failures in the runtime are a pain. This is particularly true in a
language like Dart, which is intended to run on a user's device. You
can usually restart a server application before anyone sees it has
failed. Users, on the other hand, are not pleased when a Flutter app

crashes on their phone. You're not happy if your customers aren't
happy.

Dart has good null safety, which means that values can't be null
unless you say so. Through this, Dart protects users from null
exceptions at execution. Non-nullability is preserved at runtime if you
view your running code in the debugger.

Dart Native (machine code JIT and AOT)
Dart features both a Dart VM with just-in-time (JIT) compilation and
an ahead-of-time (AOT) compiler for producing machine code for
programs targeting mobile and desktop platforms. Iteration requires
a quick development cycle. A just-in-time compiler (JIT) with
incremental recompilation (allowing hot reload), live metrics
collectors (powering DevTools), and sophisticated debugging
capabilities are all available in the Dart VM.

The Dart AOT compiler enables ahead-of-time compilation to native
ARM or x64 computer code when applications are ready for
deployment, whether to an app store or a production backend. Your
AOT-compiled program starts up quickly and consistently. It operates
inside a fast Dart runtime that both executes the sound Dart type
system and maintains memory. This is done with a generational
garbage collector and quick object allocation.

Platforms
Dart offers a development time compiler (dartdevc) as well as a
production time compiler for web projects (dart2js). Dart is
translated into JavaScript by both compilers. Unlike traditional
languages, Dart has been optimized to run as JavaScript, as an
interpreted application, or as a native application within a web
browser.

Within a Web Browser

Dart comes with an SDK that includes command-line tools for
converting Dart source code to JavaScript. This has been done so
well that the resulting transpiled JavaScript is faster than its hand-
coded counterpart. By going to dartpad. dartlang.org , you may try
out Dart on your web browser. You have the option of writing your
own code or running the sample code.

A word of caution: some Dart functionalities will not run properly from
a browser. For instance, you may find that you cannot read from
stdin or accept user input.

As Interpreted Application

A Virtual Machine is included in the Dart SDK. This works as a virtual
sandbox, within which code can run without having to interact
directly with the operating system. This process makes it easy for a
Dart code to be executed from the command line using the SDK's
dart command line tool. The code is compiled just-in-time as it is
executed. Through these means, you can write your server-side
apps easily because, here, Dart performs in the same manner as
Java/.Net.

As Native Application

Here, Dart code can be compiled in advance and distributed as
machine code. When a developer runs a Dart program from the
command line, the JIT compiler can reload the code when the
underlying source code changes, while maintaining the variables as
much as feasible. As a result, the developer can simultaneously
write and run code, because the application development is
extremely quick. After the development process, the code can be
compiled and deployed as a native program using the ahead-of-time
compiler.

https://dartpad.dartlang.org/

Dart SDK
The Dart SDK includes all of the libraries and command line tools
needed to create Dart command line, server, and non-Flutter web
projects. The Dart SDK is located in the Flutter SDK's
bin/cache/dart-sdk subdirectory. It will be downloaded the first time
you execute the flutter command—so if you already have Flutter
installed, you may not need to download the Dart SDK separately. If
any of the following statements are true, you should consider
downloading the Dart SDK:

Flutter isn't something you utilize.
You're using a version of Flutter that's older than 1.21.
You want to save disk space or download time, but you don't
need Flutter for your application.

Command-line tools , Command-line compilers , and Libraries
are its three basic components.

Command Line Tools

The Dart command line interface allows you to write, format,
analyze, test, compile, and run Dart programs. This includes the
following:

dart: This command allows you to run a Dart file in the Dart
Virtual Machine.
dart2js: This is a program that converts Dart source code to
JavaScript.
dartanalyser: This is a program that analyzes Dart source
code. Many code editors employ this technique to highlight
errors and warnings.
dartdevc: This is a program that converts Dart source code
to JavaScript. It's similar to dart2js, except it allows for

incremental compilation, which is useful for developers.
dartdoc: This is a tool that generates documentation for Dart
from source code.
dartfmt: This is a very useful program because it provides
dart formatting to Dart source code.

Command-Line Compilers

Dart may be run without being compiled to JavaScript in a browser
called Dartium . Dartium is essentially Chrome with a Dart virtual
machine. The popular Dart web development path, on the other
hand, now involves writing code in Dart and compiling and running it
as JavaScript using the dart2js and dartdevc JavaScript compilers,
as well as the webdev and build runner utilities.

When creating your app, webdev prefers dartdevc because it
provides incremental compilation, allowing you to see the results of
your changes fast. When it comes to deploying your project, webdev
recommends dart2js, which uses techniques like tree shaking to
generate efficient code. More information can be found here:

https:// webdev. dartlang. org/ tools/ webdev

Dart Core libraries

Dart includes a large set of core libraries that cover a wide range of
programming tasks.

Every Dart application has built-in types, collections, and
other essential functions (dart:core)
Queues, linked lists, hashmaps, and binary trees are more
advanced collection types (dart:collection)
Converting between multiple data representations, such as
JSON and UTF-8, with encoders and decoders

https://webdev.dartlang.org/tools/webdev

(dart:convert)
Random number creation and mathematical constants and
functions (dart:math)
Non-web apps can use file, socket, HTTP, and other I/O
methods (dart:io)
Future and Stream classes provide asynchronous
programming support (dart:async)
Fixed-size data (for example, unsigned 8-byte integers) and
SIMD numeric types (dart:typed data) are effectively
handled by lists.
For interoperability with other code that uses a C-style
interface, foreign function interfaces are used (dart:ffi)
Isolates—autonomous workers that are comparable to
threads but don't share memory and communicate
exclusively through messages—are used in concurrent
programming (dart:isolate)
For web-based applications that need to communicate with
the browser and the Document Object Model (DOM), HTML
elements and other resources are available (dart:html)

Many APIs are offered by a comprehensive set of packages in
addition to the core libraries. Many important extra packages are
available from the Dart project, including characters, intl, http, crypto,
and markdown. Thousands of packages with support for XML,
Windows integration, SQLite, and compression are also available
from third-party publishers and the greater community.

Flutter Development
As you learned in the previous chapter, the Flutter framework is an
impressive UI toolkit that runs on iOS, Android, macOS, Windows,
Linux, and the web and is driven by the Dart platform. It includes

tooling and UI libraries for creating UI experiences that operate on
iOS, Android, macOS, Windows, Linux, and the web.

Flutter was primarily built in Dart and operates on native platforms.
As a result, Flutter is both quick and adaptable, as the Flutter
widgets were written in Dart. Most often, when developing a Flutter
application, you run it in Debug Mode , and your code is JIT
compiled and interpreted. The ‘check’ or ‘slow’ mode is the name for
this mode. The assertion functions, including all debugging
information, service extensions, and debugging aids like
“observatory,” are available in this mode.

This mode is designed for quick development and operation but not
for speed of execution, package size, or deployment. Once your app
is complete, you can compile it to run in Release Mode as a native
application, which will significantly improve its performance. We will
discuss this in greater detail later in the book.

Advanced Dart With Examples
DartPad

As you now know, Flutter—Google's UI toolkit for building attractive,
natively-built mobile, web, and desktop apps from a single codebase
—uses Dart as its programming language. You may easily build and
run your examples in DartPad as long as you have a stable browser.
DartPad is a free, open-source tool that allows you to experiment
with Dart’s capabilities and core libraries in any modern browser. It
takes a new approach to features that Java developers may not be
familiar with.

DartPad additionally supports the package:flutter and dart:ui
libraries when creating Flutter apps. DartPad does not support any
libraries or deferred loading, and it does not allow you to use
packages from the pub package repository. You can, however, use
an IDE like WebStorm or IntelliJ with the Dart plugin—or Visual
Studio Code with the Dart Code extension—if you please.

The above is what DartPad looks like when configured to run Dart.

Try running some samples and developing a small command line
app with DartPad by following these simple steps:

Go to dartPad.dev to get started.
On the left, you’ll see Dart code, and on the right, you’ll see a
spot for the output.
Using the Samples list in the upper right, select a Flutter
sample like Sunflower. To the right is the rendered output.

You can use New Pad to write a simple command-line app in these
steps:

1. Confirm that you want to discard changes to the existing pad by
clicking the New Pad button.

2. After clicking the Dart logo , make sure HTML support is turned
off, and then click Create .

http://dartpad.dev/

3. Make a code change. Change the main() function to include the
following code:

for (var char in 'hello'.split('')) {

print(char);

}

4. DartPad displays hints, documentation, and autocomplete
suggestions as you type.

5. Select Format from the drop-down menu. DartPad employs the
Dart formatter to ensure appropriate indentation, white space, and
line wrapping in your code.

6. Start your app.

7. Try adding a bug if you didn't have any while entering the code. If
you alter “split” to “spit,” for example, you’ll get warnings at the
bottom right of the window. When you launch the app, the terminal
displays a compilation error.

DartPad’s language features and APIs are dependent on the Dart
SDK version that it is currently using. This SDK version can be seen
in DartPad’s bottom right corner. DartPad can also be embedded in
web pages and customized to fit your needs.

Dart Language Samples

This compilation isn’t extensive; it’s just a quick overview of the
language for those of you who, like me, prefer to learn by doing.

Hello World

The main() function is present in every program. You can use the
top-level print() method to display text on the console:

void main() {

print('Hello, World!');

}

Variables

Here's a sample of how to generate and initialize a variable:

var name = 'Bob';

Variables are used to keep track of references. The name variable
holds a reference to a String object with the value “Bob.” The name
variable’s type is assumed to be String, but you can alter it by
specifying it. Specify the Object type if an object isn’t bound to a
single type.

Object name = 'Bob';

Default Value

Uninitialized variables that have a nullable type have an initial value
of null. (Every variable has a nullable type if you haven't enabled null
safety.) Because numbers, like everything else in Dart, are objects,
even numeric variables start out null.

int? lineCount;

assert(lineCount == null);

The assert() call is ignored by production code. If the condition is
false during development, however, assert(condition) produces an
exception. If null safety is enabled, you must set the values of non-
nullable variables before using them:

int lineCount = 0;

A local variable does not need to be initialized where it is declared,
but it must be assigned a value before it can be used. Since Dart can
detect that lineCount is non-null by the time it's supplied to print() ,
the following code is valid:

int lineCount;

if (weLikeToCount) {

lineCount = countLines();

} else {

lineCount = 0;

}

print(lineCount);

Late Variables

The late modifier was created in Dart 2.12 and it has two major uses:
declaring a non-nullable variable that will be initialized later, and
lazily initializing a variable.

Declaring A Non-nullable Variable That Will Be Initialized Later

Dart's control flow analysis can usually detect whether a non-nullable
variable is set to a non-null value before it’s used, but this detection
isn’t always made. Top-level variables and instance variables are two
frequent examples: Dart can't always tell if they’re set, so in some
cases it doesn’t try. If you're certain a variable gets set before it’s
used, but Dart disputes, you can resolve the issue by declaring the
variable as late:

late String description;

void main() {

description = 'Feijoada!';

print(description);

}

Lazy Initialization

When a late variable is utilized without being properly initialized, a
runtime error occurs. If you declare a variable late but initialize it at
its declaration, the initializer executes the first time the variable is
used. This lazy initialization is useful in a few situations:

Where the variable may not be required, and initializing it is
expensive.
If you're setting up an instance variable, and the variable's
initializer requires access to this.

Built-in Types

The Dart programming language offers additional functionality for
each of the following:

Numbers (int , double)
Strings (string)
Booleans (bool)
Lists (list ; also known as arrays)
Sets (set)
Maps (map)
Runes (runes ; often replaced by the characters API)
Symbols (symbol)
The value null (null)

The ability to create objects using literals is part of this specific
capability. A good example of a string literal is “this is a string,” while
a boolean literal is “true.”

You can typically use constructors to initialize variables in Dart, since
every variable relates to an object as a class instance. There are

constructors for several of the built-in kinds. To make a map, for
example, you can use the Map() constructor. Other types play key
roles in the Dart language, as well.

Object: Except for Null, Object is the superclass of all Dart
classes.
Future and Stream: Used to support asynchrony.
Iterable: This type of variable is used in for-in loops and
synchronous generator functions.
Never: Indicates that an expression will never be able to
complete its evaluation.
Dynamic: Indicates that static checking should be disabled.
In most cases, Object or Object? should be used instead.
Void: A value is never used when it is set to void. This is
frequently used as a return type.
Numbers (Num): Dart numbers are divided into two types:
integers and doubles.

Integers (int)

Numbers without a decimal point are known as integers. Depending
on the platform, integer values of no more than 64 bits are allowed.
Values for native systems range from -263 to 263 -1. Integer values
range from -253 to 253 -1 and are represented on the web as
JavaScript numbers (64-bit floating-point values with no fractional
portion).

Doubles

A number is a double if it contains a decimal. The IEEE 754 standard
specifies 64-bit (double-precision) floating-point numbers.

Basic operators such as + , - , / , and * are included in the num type,
as are abs() , ceil() , and floor() , among other ways. (The int class

defines bitwise operators such as >> .) The dart:math library may
have what you're seeking for if num and its subtypes don’t. Here are
some instances of integer literal definitions:

var x = 1;

var hex = 0xDEADBEEF;

var exponent = 8e5;

Here are some examples of double literal definitions:

var y = 1.1;

var exponents = 1.42e5;

A variable can also be declared as a number. When this happens,
the variable could have both integer and double values, as shown
below:

num x = 1; // x can have both int and double values

x += 2.5;

Integer literals can be converted to doubles when necessary:

double z = 1; // Equivalent to double z = 1.0.

A string can also be converted into a number, and vice versa:

// String -> int

var one = int.parse('1');

assert(one == 1);

// String -> double

var onePointOne = double.parse('1.1');

assert(onePointOne == 1.1);

// int -> String

String oneAsString = 1.toString();

assert(oneAsString == '1');

// double -> String

String piAsString = 3.14159.toStringAsFixed(2);

assert(piAsString == '3.14');

Booleans

Dart contains a type called bool that represents boolean values. The
boolean literals true and false , which are both compile-time
constants, are the only objects of type bool. As a result of Dart’s type
safety, you can’t use if (nonbooleanValue) or assert
(nonbooleanValue) . Instead, check for values explicitly, as in:

// Check for an empty string.

var fullName = '';

assert(fullName.isEmpty);

// Check for zero.

var hitPoints = 0;

assert(hitPoints <= 0);

// Check for null.

var unicorn;

assert(unicorn == null);

// Check for NaN.

var iMeantToDoThis = 0 / 0;

assert(iMeantToDoThis.isNaN);

Lists

The array, or ordered group of things, is perhaps the most common
collection in practically every programming language. Arrays are list
objects in Dart, so most people just refer to them as lists. Dart list
literals resemble JavaScript array literals in appearance. Here's a
quick list in Dart:

var list = [1, 2, 3];

Dart deduces that the list is of type List<int> . The analyzer or
runtime throws an error if you try to add non-integer objects to this
list. The spread operator (...) and the null-aware spread operator
(...?) were added in Dart 2.3, and they provide a simple way to insert
several values into a collection. To insert all the values of a list into
another list, for example, you can use the spread operator (...) :

var list = [1, 2, 3];

var list2 = [0, ...list];

assert(list2.length == 4);

If you surmise that the expression to the right of the spread operator
might be null, use a null-aware spread operator (...?) to avoid
exceptions:

var list;

var list2 = [0, ...?list];

assert(list2.length == 1);

Dart also has the collection if and collection for functions, which
you may use to create collections with conditionals (if) and repetition
(for) . Here’s an example of how to use collection to make a three-
or four-item list:

var nav = [

'Home',

'Furniture',

'Plants',

if (promoActive) 'Outlet'

];

Sets

In Dart, a set is an unordered collection of unique items. Set literals
and the Set type provide support for sets. Below is a basic Dart set
made with a set literal:

var halogens = {'fluorine', 'chlorine', 'bromine', 'iodine', 'astatine'};

Dart deduces that halogens are of the Set<String> type. The
analyzer or runtime will raise an error if you try to add the improper
type of value to the set. You can use {} followed by a type argument
to generate an empty set, or assign {} to a variable of type Set as
seen below:

var names = <String>{};

// Set<String> names = {}; // This works, too.

// var names = {}; // Creates a map

Note that map literals have a syntax that is similar to set literals. Map
literals came first and so {} defaults to the Map type. Dart produces
an object of type Map<dynamic, dynamic> for cases where one
forgets the type annotation on {} or the variable it’s assigned to.

Maps

A map is an object that associates keys and values in general. Any
type of object can be used as both a key and a value. Each key
appears just once—however, the same value can be used several
times. Map literals and the Map type in Dart enable support for
maps. Here are a number of examples of simple Dart maps made
with map literals:

var gifts = {

// Key: Value

'first': 'partridge',

'second': 'turtledoves',

'fifth': 'golden rings'

};

var nobleGases = {

2: 'helium',

10: 'neon',

18: 'argon',

};

In Dart, gifts has the type Map<String, String> , while nobleGases
has the type Map<int, String> . The analyzer or runtime will raise an
error if you try to add the improper kind of value to either map.

Runes and Grapheme Clusters

Runes in Dart reveal a string’s Unicode code points. Unicode
(extended) grapheme clusters are user-perceived characters which
can be viewed and manipulated with the characters package. Each
letter, digit, and symbol used in all of the world’s writing systems has
a unique numeric value defined by Unicode. Since a Dart string is
made up of UTF-16 code units, expressing Unicode code points
within it necessitates the use of specific syntax.

A Unicode code point is usually written as \uXXXX, where XXXX is a
four-digit hexadecimal value. The heart character (♥) is, for example,
\u2665. Place the value in curly brackets to specify more or fewer
than four hex digits. The laughing emoji (😆) is, for example,
\u{1f606}. Use the characters getter defined on String by the
characters package if you need to read or write specific Unicode
characters. The string as a succession of grapheme clusters is
returned as a character object. Here’s an example of how the
characters API can be used:

import 'package:characters/characters.dart';

...

var hi = 'Hi 🇩🇰';

print(hi);

print('The end of the string: ${hi.substring(hi.length - 1)}');

print('The last character: ${hi.characters.last}\n');

Depending on your conditions, the output should look like this:

$ dart bin/main.dart

Hi 🇩🇰

The end of the string: ???

The last character: 🇩🇰

Symbols

An operator or identifier declared in a Dart program is represented
by a symbol object. You may never need to utilize symbols, but
they're essential for APIs that refer to identifiers by name. This is
because minification only affects the names of identifiers, not the
symbols. Compile-time constants are symbol literals. You can use a
symbol literal, which is just # followed by the identifier, to retrieve the
symbol for an identifier:

#radix

#bar

Functions

Dart is an object-oriented programming language. This means that
functions can be provided as arguments to other functions or
allocated to variables. Here's an example of how to execute a
function:

bool isNoble(int atomicNumber) {

return _nobleGases[atomicNumber] != null;

}

You can use a shorthand syntax for functions that only have one
expression:

bool isNoble(int atomicNumber) => _nobleGases[atomicNumber] !=
null;

The => expr syntax (also known as the arrow syntax) is a shorthand
for { return expr; } . Only an expression can exist between the arrow
(=>) and the semicolon (;) . You can't use an if- statement there, for
instance, but you can use a conditional expression.

Parameters

A function can have as many positional parameters as it needs.
Named parameters or optional positional parameters can be added
after these—but not both . Even with necessary parameters, some
APIs, such as Flutter widget constructors, employ just named
parameters. When passing arguments to a function or defining
function parameters, you can use trailing commas.

Named Parameters

Unless they're explicitly declared as mandatory, named parameters
are optional. You can use paramName: value to specify named
parameters when calling a function. Consider the following scenario:

enableFlags(bold: true, hidden: false);

When defining a function, you also typically use {param1, param2,
…} to specify the named parameters, if any:

/// Sets the [bold] and [hidden] flags ...

void enableFlags({bool? bold, bool? hidden

Default Parameter Values

Your function can use = to define default values for either named or
positional parameters. Compile-time constants must be used as
default values. The default value is null if no default value is
specified. Setting default values for named parameters can be done
in the following way:

/// Sets the [bold] and [hidden] flags ...

void enableFlags({bool bold = false, bool hidden = false}) {...}

// bold will be true; hidden will be false.

enableFlags(bold: true);

Every program must have a top-level main() function that acts as the
app's entry point. The main() function returns void and has an
optional List<String> parameter for arguments. Here’s a simple
main() function:

void main() {

print('Hello, World!');

}

For command line apps that take arguments, here's an illustration of
a main() function:

// Run the app like this: dart args.dart 1 test

void main(List<String> arguments) {

print(arguments);

assert(arguments.length == 2);

assert(int.parse(arguments[0]) == 1);

assert(arguments[1] == 'test');

}

Anonymous Functions

The majority of functions, such as main() and printElement , are
named () . An anonymous function, often known as a lambda or
closure, is a type of nameless function. You can use an anonymous
function to add or delete items from a collection by assigning it to a
variable.

An anonymous function has zero or more parameters, separated by
commas and optional type annotations, and is enclosed in
parentheses. The body of the function is included in the code block
as follows:

([[Type] param1[, …]]) { codeBlock;};

The example below shows how to create an anonymous function
with an untyped parameter, item. The function prints a string that
includes the value at the provided index for each item in the list:

const list = ['apples', 'bananas', 'oranges'];

list.forEach((item) {

print('${list.indexOf(item)}: $item');

});

You can use the arrow notation to shorten a function that has only
one expression or return statement. When sending anonymous
functions as arguments, this shorthand syntax can be incredibly
helpful:

flybyObjects.where((name) => name.contains('turn')).forEach(print);

Classes

A class of three attributes, two constructors, and a function is shown
below. Since one of the attributes can’t be set directly, a getter
method is used to specify it (instead of a variable).

class Spacecraft {

String name;

DateTime? launchDate;

int? get launchYear => launchDate?.year; // read-only non-final
property

// Constructor, with syntactic sugar for assignment to members.

Spacecraft(this.name, this.launchDate) {

// Initialization code goes here.

}

// Named constructor that forwards to the default one.

Spacecraft.unlaunched(String name) : this(name, null);

// Method.

void describe() {

print('Spacecraft: $name');

var launchDate = this.launchDate; // Type promotion doesn't work on
getters.

if (launchDate != null) {

int years = DateTime.now().difference(launchDate).inDays ~/ 365;

print('Launched: $launchYear ($years years ago)');

} else {

print('Unlaunched');

}

}

}

Mixins

Mixins allow code to be reused across several class hierarchies. A
mixin declaration looks like this:

mixin Piloted {

int astronauts = 1;

void describeCrew() {

print('Number of astronauts: $astronauts');

}

}

Simply extend the class with the mixin to add the mixin’s features:

class PilotedCraft extends Spacecraft with Piloted {

// ···

}

Interfaces and Abstract Classes

There is no interface keyword in the Dart programming language. All
classes, on the other hand, specify an interface automatically. As a
result, any class can be implemented:

class MockSpaceship implements Spacecraft {

// ···

}

You can design an abstract class that a concrete class can extend
(or implement), and abstract methods can be found in abstract
classes (with empty bodies). The describeWithEmphasis() function
is available in any class that extends Describable and invokes the
extender’s version of describe() :

abstract class Describable {

void describe();

void describeWithEmphasis() {

print('=========');

describe();

print('=========');

}

}

Async

While working with Dart, you can use async and await to make your
code more legible:

const oneSecond = Duration(seconds: 1);

// ···

Future<void> printWithDelay(String message) async {

await Future.delayed(oneSecond);

print(message);

}

The above is identical to:

Future<void> printWithDelay(String message) {

return Future.delayed(oneSecond).then((_) {

print(message);

});

}

As shown in the following example, async and await make
asynchronous programming easier to read:

Future<void> createDescriptions(Iterable<String> objects) async {

for (var object in objects) {

try {

var file = File('$object.txt');

if (await file.exists()) {

var modified = await file.lastModified();

print(

'File for $object already exists. It was modified on $modified.');

continue;

}

await file.create();

await file.writeAsString('Start describing $object in this file.');

} on IOException catch (e) {

print('Cannot create description for $object: $e');

}

}

}

Conclusion
Even though this chapter summarises some of the most commonly
used features in the Dart language, there are lots more features
being implemented. For more information, visit these pages.

For Dart language specification: dart. dev/ guides/ language/spec

For effective Dart: dart. dev/ guides/ language/ effective-dart

To learn more about Dart’s core libraries: dart. dev/ guides/ libraries/
library-tour

https://dart.dev/guides/language/spec
https://dart.dev/guides/language/effective-dart
https://dart.dev/guides/libraries/library-tour

FOUR

Introduction To Flutter

The purpose of this chapter is to give you a more intimate
understanding of Flutter before you get into installing and using it.

What is Flutter?
Flutter is not a programming language (like JavaScript, for example).
It is a Google mobile SDK/UI framework that allows developers to
create native apps for Android and iOS devices. Developers build
code that works on both platforms in a single codebase.

Flutter uses existing code and so is readily available to developers
around the world. It is the only mobile SDK framework that supports
reactive styles without the use of a JavaScript bridge. The SDK is
open-source and free, allowing developers to experiment with and
create powerful tracking applications. This is the reason why Flutter-
based apps and interfaces exist. Flutter uses a single codebase,
compiles directly to native arm code, takes advantage of the GPU,
and makes use of the platform APIs and services.

Today’s mobile users expect gorgeous designs, smooth animations,
and quick performance from their apps. As a result, developers are
expected to meet these goals without sacrificing quality or
performance. They turn to Flutter for the following reasons.

High Productivity

Flutter was created with the goal of speeding up the development of
apps. It is substantially faster than other development methods and
does not require a Javascript bridge. You can make changes to your
code and then hot reload to see your changes in action immediately.
Flutter comes with all of the UI Widgets you’ll need and is compatible
with most IDEs.

Saves Time

You may utilize the same codebase for your iOS and Android apps,
because Flutter is cross-platform. This will undoubtedly save you
time and money.

Exceptional Quality

Flutter comes with a wide range of widgets that can be customized
for Android, iOS, and Material Design. Flutter’s work with Google’s
Material Design has resulted in a strong UI experience that is simple
to construct. This aids in the creation of a smooth, crisp, and refined
app experience similar to that of a native app.

The Flutter UI Widgets that come with the project function fluidly and
normally with the target platform. The target system's scrolling,
navigation, icons, and typefaces are all compatible. When you use
the Flutter Widgets to create an Android app, it appears to be a
standard Android app. When you use the Flutter Widgets to create
an iOS app, it appears to be a standard iOS app. See the figure
below for the demo:

Improved Performance

Flutter was created with a high development rate in mind. Its stateful
hot reload allows you to make changes to your code and witness it
come to life in under a second without losing the app's state. Flutter
also comes with a large number of widgets that may be customized,
all of them are designed using the Modem Reactive Framework.
Flutter promises to deliver 60 frames per second (fps) on devices
with 120Hz updates, or 120 fps on devices with 120Hz updates.
Frames must render every 16 milliseconds at 60 frames per second.
Flutter code runs natively, which means its speed is impressive.

Free and Open

Flutter and Dart are both open-source and free to use, and they
come with substantial documentation and community assistance to
aid you with any problems you might run into. Flutter apps follow
platform conventions and interface details such as scrolling,

navigation, icons, fonts, and more. This is why apps built with Flutter
feature on both the Apple AppStore and Google Play Store.

Fuchsia

Google's upcoming mobile operating system is called Fuchsia.
Google is developing all of the apps for Fuchsia in Flutter. With its
single codebase development and hot reload functionality for
Android and iOS platforms, Flutter is noted for saving money. If
developers are able to combine the dual strength of Flutter and
Fuchsia in the future, they will be able to release apps on any
platform, including smart homes, with minimal effort and in record
time.

Flutter Source Code
Any collection of code, with or without comments, written in a
human-readable programming language (usually as plain text) is
referred to as source code in computer science. The source code of
a program is specifically designed to aid the work of computer
programmers, who write source code to outline the tasks that a
computer should accomplish.

An assembler or compiler converts source code into binary machine
code that can be executed by the computer. The machine code
might then be saved and run at a later date. Alternatively, source
code can be interpreted and run right away.

Flutter's source code is available in multiple places or repositories
and is open source. Source code repositories are mostly used for
backups and versioning, as well as for managing multiple source
code versions and resolving conflicts that emerge from developers
making overlapping modifications on multi-developer projects. For
Flutter, this is hosted on GitHub here github. com/ flutter/ flutter and
includes: the main repository, sample code repository, and plugins
(which contains the source code for plugins developed by the core
Flutter team to enable access to platform-specific APIs).

Flutter Framework

https://github.com/flutter/flutter

As far as framework goes, the major components of Flutter include:

Dart platform
Flutter engine
Foundation library
Design-specific widgets
Flutter Development Tools (DevTools)

Dart Platform

In the last chapter, we discussed the Dart platform. Flutter apps are
written in Dart and make extensive use of the language’s advanced
features. Flutter runs in the Dart virtual machine on Windows,
macOS, and Linux, which has a just-in-time execution engine.

Flutter leverages just-in-time (JIT) compilation while building and
debugging apps. This affords developers the opportunity to “hot
reload,” allowing changes to source files to be injected into a live
application. Flutter adds support for stateful hot reload, which means
that changes to source code are reflected in the running app without
requiring a restart or losing state in most circumstances. Release
versions of Flutter apps for Android and iOS are compiled with
ahead-of-time (AOT) compilation for enhanced efficiency.

Flutter Engine

Flutter’s engine, which is mostly built in C++, uses Google’s Skia
graphics package for low-level rendering. It is available on GitHub at
github. com/ flutter/ engine and includes graphic rendering
functionality as well as an interface (through the Flutter core
libraries). The engine also works with platform-specific SDKs, such
as those offered by Android and iOS.

https://github.com/flutter/engine

The Flutter Engine is a portable runtime that may be used to host
Flutter apps. It includes animation and graphics, file and network I/O,
accessibility support, plugin architecture, and a Dart runtime and
compile toolchain, among other things. Most developers interact with
Flutter via the Flutter Framework, which provides a reactive
framework and a set of platform, layout, and foundation widgets.
More tooling may be obtained at github. com/ flutter/ engine/ tree/
master/ lib/ web_ui/ dev#whats-felt if you want to run/contribute to
the Flutter web engine. This is a program that was created to make
web engine building easier.

Foundation Library

The lowest-level utility classes and functions utilized by all other
levels of the Flutter framework are specified in this library. The
Foundation library, written in Dart, provides basic classes and
functions which are used to construct applications using Flutter, such
as APIs to communicate with the engine. It can be easily accessed
on GitHub through this link:

https:// github. com/ flutter/ flutter/ tree/ master/ packages/ flutter/ lib/
src/ foundation

Design-Specific Widgets

The Flutter framework has two sets of widgets that adhere to
different design styles: Material Design widgets, which use Google's
Material Design design language, and Cupertino widgets, which
employ Apple's iOS Human Interface principles. The following are
examples of available Flutter widgets:

AlertDialog: Alerts are brief interruptions that need
acknowledgement and inform the user of a problem. This
component is implemented by the AlertDialog widget.

https://github.com/flutter/engine/tree/master/lib/web_ui/dev#whats-felt
https://github.com/flutter/flutter/tree/master/packages/flutter/lib/src/foundation

BottomNavigationBar: Using bottom navigation bars, you
can quickly explore and move between top-level views. This
component is implemented by the BottomNavigationBar
widget.
Checkboxes allow the user to choose from a collection of
many possibilities. This component is implemented by the
Checkbox widget.
Drawer: A Design panel that slides in from the Scaffold's
edge to display navigation links in an application.
Expanded: This is a widget that expands a Row, Column, or
Flex's child.
Form: A container that can be used to combine together
several form field widgets (e.g. TextField widgets).
Gridview Widget: A grid list is made up of a repetitive
pattern of cells arranged vertically and horizontally. This
component is implemented by the GridView widget.
IconButton: An icon button is a picture that is printed on a
Material widget and fills with color when it is touched (ink).
Image widget: A widget that displays an image is known as
an image widget.
ListBody: A widget that arranges its children in a specific
order along one axis, forcing them to the same dimension as
the parent on the opposite axis.
MaterialApp: This is a convenience widget that
encapsulates a variety of widgets that are typically utilized in
Material Design applications. To learn more about Flutter
widgets, visit flutter.dev/docs/reference/widgets .

Flutter Release Process
As far as release processes go, Flutter’s is pretty straightforward.
Google engineers work with the ‘dev’ branch while developing with
Flutter on a daily basis. The ‘dev’ branch gets rolled into the ‘beta’
branch once a month. While the ‘beta’ branch is folded into the
‘stable’ branch every quarter. For more information, visit this link:

https://flutter.dev/docs/reference/widgets

https:// github. com/ flutter/ flutter/ wiki/ Release- process

Flutter Channels
“Flutter Channel” refers quite simply to a Flutter build release
channel. Different release builds can be found in different channels,
each with its own topicality and stability. As a result, Flutter channels
allow a Flutter developer to select a version that is closer to the
project's newest master build.

Another great thing about Flutter is that as a developer, you can
choose which version of Flutter you prefer to use when working with
it. For example, the ‘stable’ channel offers the developer a more
‘stable’ version of Flutter and so is where most people work. In this
regard, the following channels are available:

Master

Master is the most up-to-date, cutting-edge build currently available.
The master channel should only be used for development and
should not be the foundation of your app. It's usually functional, but
it's not always the best option. This is because no tests were
conducted prior to the build; this channel may have broken
functionality.

Dev

Dev is the latest fully-tested build as far as Flutter channels go.
Usually functioning; however, see github. com/ flutter/ flutter/ wiki/
Bad- Builds for a list of all dev branch commits that should not be
released to a more stable channel.

While you’re at it, see github. com/ flutter/ flutter/ wiki/ Bad- Build-
Identification for more information on how to spot bad dev builds to

https://github.com/flutter/flutter/wiki/Release-process
https://github.com/flutter/flutter/wiki/Bad-Builds
https://github.com/flutter/flutter/wiki/Bad-Build-Identification

help you avoid pitfalls.

Beta

The beta channel, which is branched from master at the beginning of
each month, comprises builds that are at most a month old and on
average two weeks old. For over a month, this channel has had the
same build, and cherrypick requests for repairs are welcomed. By
the end of the month, the builds in this channel are generally more
stable. The build enters the stable channel after around a quarter.
You can find a list of changes since the last beta release at this link:

github. com/ flutter/ flutter/ wiki/ Changelog

Stable

Every quarter or so, fresh builds are added to the stable channel.
This release comes from a branch of the beta channel that has had
cherrypick requests for critical issues. This is the main channel that
is approved for production use because there has been a stabilizing
period in comparison to the beta channel. Aside from that, no other
automated tests were carried out.

Which Channel To Use
This choice depends entirely on your peculiar use.

It is advisable to only utilize the stable channel if you're working on
an app that will be released in a production environment.

The beta channel is a good place to go if your project is limited to
features already in beta.

If you expect to encounter issues with that build, you might switch to
the stable channel for improved functionality.

https://github.com/flutter/flutter/wiki/Changelog

You might also wish to use the dev channel if you think two weeks to
a month is too long, because the builds in this channel have passed
automatic testing.

How to Change Channels
It’s as simple as issuing a single command to change your current
channel. The command’s name is self-explanatory: flutter channel .
The only required argument here is the channel name: stable, beta,
dev, or master. You'll get a list of all available channels if you don’t
specify any arguments. You can see which channel you’re on with
the following command:

$ flutter channel

Flutter channels:

* stable

beta

dev

master

To switch channels, run flutter channel [<channel-name>] , and
then run flutter upgrade to ensure you're on the latest. After
selecting another channel, you should always use the following
command to update the Flutter library: flutter upgrade . For further
reading, visit:

github. com/ flutter/ flutter/ wiki/ Flutter- build- release-
channels#how- to- change- channels .

https://github.com/flutter/flutter/wiki/Flutter-build-release-channels#how-to-change-channels

Conclusion
Flutter is a fast, engaging, and modern method to deliver native apps
if you’re new to mobile. If you’re a seasoned mobile developer, you
can include Flutter into your existing process and tools to create new
expressive user interfaces.

Flutter channels are a great way to try out new features ahead of
time. You can participate in the development process by reporting
any problems you have while testing the features before they are
released to the stable channel. Take a look at the official
documentation at this link for more details on the release process:

github. com/ flutter/ flutter/ wiki/ Release- process

https://github.com/flutter/flutter/wiki/Release-process

FIVE

Installing Flutter 2.2

The goal of this chapter is to guide the reader through the process of
installing Flutter 2.2 and an editor. Flutter 2.2 is based on Flutter 2,
which expanded Flutter’s capabilities beyond mobile to include web,
desktop, and embedded applications.

It's made for a world of ambient computing, where users have a wide
range of devices and form factors and want a consistent experience
across all of them. With Flutter 2.2, businesses, tech firms, and
innovators can create high-quality alternatives that reach the full
potential of their target market, with the only limiting factor being
creative inspiration (rather than target platform).

Developing on a PC for iOS
Flutter applications can be developed on a PC with no issues until
you want to run your code on an Apple iOS device, such as an
iPhone or iPad. Apple’s XCode tool is the only reliable way to
compile iOS applications on macOS. The good news is that Flutter is
extremely cross-platform friendly, and you can complete 90% of the
development on a PC, even if you plan to deploy to iOS. You can
truly develop on one platform, run it on another, and trust that it will
work almost flawlessly on both.

You’ll have the option of buying, borrowing, or renting a Mac when it
comes to testing and deployment. All you have to do now is use
software like VMWare or Virtual Box to create a Mac virtual machine
on your PC. You may also use a service like macincloud.com to rent
a Mac in the cloud for about $20 per month.

Installing Flutter 2.2
I’m not going to go through every detail of Flutter installation,
because there are lots of great places to learn about it. YouTube
alone has numerous videos on the subject, and you can access all
the information you need on flutter. io/ docs/ get- started/ install , the
official Flutter website.

Installation is not a particularly difficult procedure. I’ll go over the
basics, which are the same in all environments.

Prerequisites

Your development environment must meet the following basic
requirements in order to install and execute Flutter:

Operating Systems: x86-64 based, Windows 7 SP1 or later
(64-bit).
Disk Space: 1.64 GB (does not include IDE/tools disk
space).
Flutter also relies on the presence of Windows PowerShell
5.0, but the good news is that this is pre-installed with
Windows 10.

Other needed command line tools you will need include:

http://www.macincloud.com/
https://flutter.io/docs/get-started/install

Bash
Curl
Mkdir
Rm
Unzip
which

Software Needed
Git

Flutter installs and upgrades using Git. So, before you do anything
else, make sure you have Git installed. In Git for Windows 2.x, you
can use Git via the Windows Command Prompt option. Make sure
you can run the git command straight from the command prompt (or
PowerShell if you have the Windows version of Git installed).
Installing Xcode, which includes Git, is recommended; however, Git
can also be installed alone. Check out this link for more details:

git- scm. com/ download/mac

Brew

On MacOS, the official approach to installing Flutter and its
dependencies is a mixture of brew install, binary downloads, and
reliance on system-installed ruby versions. If you’re installing Flutter
on a Mac, you need to first install Brew, as the Flutter Doctor will ask
you to use Brew to install additional software as needed.

XCode Command Line Tools

If you are planning to install Flutter apps for iOS or on a Mac, you
are definitely going to need to install the latest stable version of
Xcode (from the web at developer.apple.com/xcode or from the

https://git-scm.com/download/mac
https://developer.apple.com/xcode/

Apple AppStore). Run this from the command line to configure the
Xcode command line tools in order to use the newly installed version
of Xcode:

$ sudo xcode-select --switch
/Applications/Xcode.app/Contents/Developer

$ sudo xcodebuild -runFirstLaunch

When you want to use the most recent version of Xcode, this is the
best approach to take. Open Xcode once and confirm, or execute
sudo xcodebuild -license from the command line to ensure the
Xcode license agreement is signed. If you need to use a different
version, specify that path instead. It is not supported, and it is
unlikely to work, to target bitcode with older versions of Xcode.
Flutter apps can be executed on an iOS device or in the simulator
using Xcode.

1. Download the Flutter SDK

We already explained how the Flutter SDK includes all of the tools
you'll need to get started with Flutter programming. In addition to the
Flutter Doctor, a really useful tool for setting up your Flutter
Development environment,it also houses other Flutter SDK
commands such as:

Flutter help: Contains a set of flutter commands.
Flutter analyze: Examines the Dart code in the project.
Flutter Attach: Attach to a running application with Flutter.
Flutter bash-completion: Setup scripts for command line
shell completion.
Flutter build: Builds commands for Flutter
Flutter channels: Lists or switches flutter channels
Flutter clean: Deletes the directories build/ and.dart tool/.
Flutter config: Allows you to configure your flutter settings.

Flutter create: Creates a new flutter project.
Flutter drive: Runs Flutter driver tests for each present
project.
Flutter emulators: Generates, runs, and lists emulators.

Extract the file to a convenient location, such as:

$ cd ~/development

$ unzip ~/Downloads/flutter_macos_v1.12.13+hotfix.5-stable.zip

2. Set Up Your Path

The Flutter SDK includes command line utilities, such as Flutter
Doctor, and these must be run from the command line. The Flutter
SDK's bin subdirectory contains several command line tools. To run
the command line tools from the command line, you must include the
‘bin’ folder (inside the flutter SDK) in your computer’s path. Then,
add the Flutter tool to your path as demonstrated below:

$ export PATH="$PATH:`pwd`/flutter/bin"

This command sets your PATH variable for the current terminal
window only. As needed, the flutter tool also downloads platform-

specific development binaries. iOS and Android binaries can be
downloaded ahead of time in cases where pre-downloading these
artifacts is preferred (for example, in hermetic build environments or
with intermittent network access).

$ flutter precache

For additional download options, see flutter help precache
command. To update your path:

Identify the location where you placed the Flutter SDK.
Open (or create) your shell’s rc file. For example, macOS
Mojave (and earlier) uses the Bash shell by default, so edit
$HOME/.bash_profile or $HOME/.bashrc . macOS Catalina
uses the Z shell by default, so edit $HOME/.zshrc . On your
PC, the file path and filename will be different if you use a
different shell.
Include the following line and change [
PATH_TO_FLUTTER_GIT_DIRECTORY] to be the path
where you cloned Flutter’s git repo:

$ export PATH="$PATH:
[PATH_TO_FLUTTER_GIT_DIRECTORY]/flutter/bin"

To refresh the current window, run source $HOME/.rc file> ,
or open a new terminal window to source the file
automatically.
Run the following command to see if the flutter/bin directory
is now in your PATH :

$ echo $PATH

3. Run Flutter Doctor

This command examines your surroundings, diagnoses (as a doctor
would) what’s positive and negative about your Flutter development,
and displays a report to your terminal window. It will also provide you
with a summary and instructions for what you need to do to improve.
To see if you need to install any dependencies to finish the setup,
run the following command (with the -v flag to get more verbose
output):

$ flutter doctor

The Dart SDK comes with Flutter, so you won't need to install it
separately. Check the results for any additional applications you’ll
need to install or tasks you’ll need to complete (shown in bold text).
Consider the following example:

[-] Android toolchain - develop for Android devices

• Android SDK at /Users/obiwan/Library/Android/sdk

✗ Android SDK is missing command line tools; download from
https://goo.gl/XxQghQ

• Try re-installing or updating your Android SDK,

visit https://flutter.dev/setup/#android-setup for detailed instructions.

Run the flutter doctor command again once you’ve installed any
missing dependencies to make sure you’ve set everything up
correctly.

4. Install Editor

After you’ve finished with the Flutter Doctor, you’ll need to set up
your editor. Flutter allows you to create apps with any text editor and
your command line, but for a more seamless experience, one of the
Flutter editor plugins is recommended. Code completion, syntax
highlighting, widget editing assistance, run and debug support, and
more are all available with these plugins.

Flutter's Android platform dependencies are supplied via a full
installation of Android Studio. By the time you get through the Flutter
Doctor, you should already have the Android Studio editor installed.
This does not preclude you from using another editor; you can
continue to use Visual Studio Code for the majority of your work
while leaving Android Studio open.

Introduction: Android Studio
Android Studio is the official IDE for developing Android apps,
offering a complete and well-supported (by Google) solution. Android
Studio is a free program built on IntelliJ IDEA (and therefore fairly
similar to IntelliJ in operation). It’s a fantastic editor that works very
well for designing Flutter iOS apps. Installing the Flutter plugins into
Android Studio is the simplest method to get started with an editor.

To install Android Studio, follow these easy steps:

Download and install Android Studio from developer.
android. com/ studio .
Start Android Studio and follow the ‘Android Studio Setup
Wizard’ instructions. The latest Android SDK, Android SDK
Platform-Tools, and Android SDK Build-Tools will be
automatically installed, and these are required by Flutter
when working for Android.

Setting Up Your Android Device

You’ll need an Android device running Android 4.1 (API level
16) or higher to run and test your Flutter app.
On your device, enable Developer settings and USB
debugging. The manual has detailed instructions: developer.
android. com/ studio/ debug/ dev- options
For Windows only: Install the Google USB Driver.
Connect your phone to your computer with a USB cable.
Allow your computer to access your device if prompted.
Run the flutter devices command in the terminal to see if
Flutter recognizes your connected Android device.

Setting Up the Android Emulator

Follow these steps to get your Flutter app ready to launch and test
on the Android emulator.

On your machine, enable VM acceleration.
Select Create Virtual Device in Android Studio → Tools →
Android → AVD Manager . (The Android submenu appears
only when you're working on an Android project.)
Select Next after selecting a device definition.

https://developer.android.com/studio
https://developer.android.com/studio/debug/dev-options

Select Next after selecting one or more system images for
the Android versions you want to imitate. It’s best to use an
x86 or x86 64 image.
To activate hardware acceleration, go to Emulated
Performance and select Hardware → GLES 2.0 .
Select Finish after double-checking the AVD configuration.
In the toolbar of Android Virtual Device Manager, select Run
.When the emulator starts up, it displays the default canvas
for the OS version and device you’ve chosen.

Installing Flutter and Dart Plugins

To begin, open Android Studio.
Open Plugin Preferences (on macOS, Preferences →
Plugins , on Windows, File → Settings → Plugins).
Select Marketplace , then Flutter from the drop-down menu.
When prompted to install the Dart plugin, select Yes .
When prompted, select Restart .

If you already use Intellij, you can simply install the Flutter plugin in
the same way, as it is in Android Studio (see above).

Flutter Outline

The Flutter Outline is one of the best features of the Android Studio.
When you edit a file, it displays the Widgets defined in that file, along
with their variables, code, and structure. It also allows you to add
Centering, Padding, Rows, Columns, and other features to Widgets
in your ‘build’ methods.

Visual Studio Code
Visual Studio Code is an excellent alternative to Android Studio, and
it is a little more lightweight (runs faster, uses less memory). It’s a
terrific editor that’s both quick and free to use. If Visual Studio Code
is your preferred editor, follow these steps to install the Flutter and
Dart plugins.

1. Start Visual Studio Code.
2. Select View → Command Palette from the menu.
3. Select Extensions: install after typing “install.” Extensions

should be installed.
4. In the extensions search window, type “flutter,” choose

Flutter from the list, and click Install . This also installs the
Dart plugin, which is essential.

For further reading, visit:

flutter. io/ docs/ get- started/ editor? tab= vscode

Mac Platform Setup
Flutter apps for iOS, Android, and the web are supported on macOS
(technical preview release). To build and execute your first Flutter
app, complete the platform setup processes in the steps below.

Set Up an iOS Simulator

Locate the Simulator on your Mac using Spotlight or the following
command:

https://flutter.io/docs/get-started/editor?tab=vscode

$ open -a Simulator

Check the settings in the simulator's Hardware → Device menu to
make sure your simulator is running on a 64-bit device (iPhone 5s or
later).

Simulated high-screen-density iOS devices may overflow your
screen depending on the screen size of your development machine.
In the simulator, go to Window → Scale and adjust the device scale.
That’s all there is for installing Flutter on a Mac using Xcode.

Activate Desktop Support

To activate Win32 desktop support, type the following in the
command prompt:

$ flutter config --enable-windows-desktop

To enable Windows UWP desktop support, move to the dev channel,
upgrade Flutter, then enable UWP with the commands below.

$ flutter channel dev

$ flutter upgrade

$ flutter config --enable-windows-uwp-desktop

For more information, visit https:// flutter. dev/ desktop .

Finally, use the Flutter Doctor to validate your setup through these
last steps:

Select View → Command Palette from the menu bar.
Type “doctor” and select Flutter: Run Flutter Doctor .
In the OUTPUT window, review carefully for any problems.
Make sure Flutter is selected from the dropdown menus in
the various Output Options.

Conclusion
Flutter 2.2 is the best version of Flutter yet. Its updates make it
easier for developers to monetize their apps through in-app
purchases while staying connected to cloud services and APIs. Its
tooling and language features also come in handy for the elimination
of a whole class of errors, improvement of app performance, and
reduction of package size. Dart is updated in this release as well.
Support for type aliases is also included, to improve readability and
provide a better approach for some refactoring circumstances. To
learn more, visit:

flutter. dev/ docs/ get- started/ install

https://flutter.dev/desktop
https://flutter.dev/docs/get-started/install

SIX

Flutter Project 1 - Build Your First App

Flutter’s popularity is growing so much daily that most people will
recommend Flutter for creating a hybrid app. If you’re a developer,
you’ve probably heard someone ask (or asked yourself), “What are
some authentic Flutter projects I can work on to obtain real-world
experience?” Well, the goal of this chapter is to provide you with
concrete examples and the step-by-step instructions you’ll need to
build some interesting Flutter projects from the ground up.

1. Creating Your Flutter Project
Follow the steps outlined in the previous chapter to install Andoird
Studio if you have not already done so. Now open Android Studio
and select New Flutter project from the menu.

Click File → New → New Flutter Project if you're already in the
project.

We’re going to make a Flutter Application, which is a full-featured
iOS/Android app. As you’re learned, plugins and packages are
components designed to enhance and add functionality to a Flutter
project or to make routine chores easier, e.g. barcode scanners or
wrappers for Firebase services. All packages are listed on
pub.dartlang.org . To continue, click Next .

http://pub.dartlang.org/

At this point, feel free to give your project a name. For our purposes,
I’ll just name this project demo_flutter_app . If you encounter any
problems at this stage, it could either mean that there is a problem
with the SDK path or that your Flutter app was not installed correctly.
Retrace your steps and correct any errors. Then click Next to
continue.

2. Set The Package Name
An Android app’s package name identifies it on the device, in the
Google Play Store, and in compatible third-party Android shops. It’s
a one-of-a-kind name used to distinguish your app from others on

the Play Store, and isn’t accessible to the public. It is normally made
up of three components, but it can also be made up of two. Mozilla’s
Firefox Browser for Android, for example, has the package ID
org.mozilla.firefox .

The company_domain + app_name typically makes up the
package name, but for this sample project, simply example.com
would suffice.

A word of note: If you want to upload your app to the Google Play
Store, avoid using example.com, because it is restricted.

For platform-specific tasks, the last two options allow you to use
native Kotlin or Swift code. For the time being, you can ignore this
section. To complete this stage of the project, click Finish as shown
below:

3. Exploring the Project
On the right side of your screen, you should be looking at some code
right about now, while on the left, you’re probably seeing some files.
If you’re new to mobile programming, the code may appear strange
—but before we get into the code, let's get a better understanding of
the project's files. To build a basic app with flutter, you only need to
focus on the lib directory and the pubspec.yaml file.

The lib directory has all of the primary Dart code for running your
app, while the pubspec.yaml file contains all of the packages you’ve
imported. (For Android developers, this is the equivalent of adding
dependencies to your gradle files.) In traditional Android

development, separate layout and Java/Kotlin files are required, but
Flutter eliminates this requirement entirely.

The test directory is for writing Dart tests that are analogous to
Espresso-based instrumented tests in Android. The tests are
important because they allow you to verify that a component works
without having to perform the task yourself. A sample test has been
developed for you, which you can run to see how it works.

Let’s move on to the codes on the left side of your screen.

4. Understanding the Default App and Code

Flutter produces a default counter app for you when you create the
project. The app merely keeps track of how many times the button is
pressed.

Have a look at the main.dart file. This is the app’s default landing
page. Before we go into the codes, we must first grasp a basic idea
in Flutter: a Widget.

So, what exactly is a widget? A widget is any component of an
interface that allows a user to utilize your app to execute a function
or access a service. Every visible element, layout, and even the app
itself are widgets in Flutter. This is similar to an Android View, but
Flutter takes it a step further. A widget is any visible element or
structure, such as an image, text, or layout. These widgets are used
to construct our screen. Let’s have a look at how it’s done in the
default app.

import 'package:flutter/material.dart';

void main() => runApp(new MyApp());

class MyApp extends StatelessWidget {

@override

Widget build(BuildContext context) {

return new MaterialApp(

title: 'Flutter Demo',

theme: new ThemeData(

primarySwatch: Colors.blue,

),

home: new MyHomePage(title: 'Flutter Demo Home Page'),

);

}

}

class MyHomePage extends StatefulWidget {

MyHomePage({Key key, this.title}) : super(key: key);

final String title;

@override

_MyHomePageState createState() => new _MyHomePageState();

}

class _MyHomePageState extends State<MyHomePage> {

int _counter = 0;

void _incrementCounter() {

setState(() {

_counter++;

});

}

@override

Widget build(BuildContext context) {

return new Scaffold(

appBar: new AppBar(

title: new Text(widget.title),

),

body: new Center(

child: new Column(

mainAxisAlignment: MainAxisAlignment.center,

children: <Widget>[

new Text(

'You have pushed the button this many times:',

),

new Text(

'$_counter',

style: Theme.of(context).textTheme.display1,

),

],

),

),

floatingActionButton: new FloatingActionButton(

onPressed: _incrementCounter,

tooltip: 'Increment',

child: new Icon(Icons.add),

),

);

}

}

I've tried to keep things basic by removing some comments, but this
is essentially the project’s default code. While this appears to be a lot
for a default project, keep in mind that this is your complete project.
Try to read the comments I’ve left out if you can. This page does not
have its own layout file. Let's have a look at the most significant
elements of the code.

The main function is the first thing you see, and it just launches a
new instance of the program. The notation => creates a new app.

For a more in-depth understanding of Dart notation and syntactic
sugar, I recommend taking their language tour.

There’s also the app itself, dubbed MyApp, which extends a
stateless widget. Widgets are divided into two categories; stateful
widgets and stateless widgets . To explain their differences plainly,
if a page is static and contains only static information, it should be
made into a stateless widget. Make a stateful widget out of anything
on a page that needs to update. The main app is a stateless widget
in and of itself. The same is true for pages within the app.

The build function creates the widgets from scratch. Consider this to
be the construction of the layout. We return a MaterialApp from the
MyApp class, which is a widget that builds a Material App. The title,
theme, and homepage are all set in the MaterialApp. If you alter the
home: argument, the app’s first opening page will change, as well.
The Flutter team created these widgets to help you avoid writing a lot
of boilerplate code.

return new MaterialApp(

title: 'Flutter Demo',

theme: new ThemeData(

primarySwatch: Colors.blue,

),

home: new MyHomePage(title: 'Flutter Demo Home Page'),

);

Now that the app has been developed, let’s look at the
MyHomePage class, which is the app’s first page. The primary
distinction is that this page is a stateful widget. When a button is hit,

we want to alter something dynamically on the website—in this case,
the counter text.

The term “state” simply refers to the current state of a page, which
keeps all the dynamic elements on the page, such as text submitted
in a text field or the number of clicks for a counter. That’s why the
state has a counter field that stores the count.

We really build the page we see with numerous other widgets in the
build method of the MyHomePageState class. For instance, a
Scaffold is a widget that makes adding things like AppBars
(ActionBars), Bottom Navigation, and Drawers much easier. An
AppBar, a floating action button, and a body are included in the
default code.

The body has a Center widget that simply centers everything on the
screen within it. A Column is placed inside the main widget. A
Column is a vertical, linear grouping of items (similar to Android's
LinearLayout).

new Column(

mainAxisAlignment: MainAxisAlignment.center,

children: <Widget>[

new Text(

'You have pushed the button this many times:',

),

new Text(

'$_counter',

style: Theme.of(context).textTheme.display1,

),

],

),

A Column has a children element, in which all of your vertically
organized items are placed. There is some text for the counter itself
inside our Column.

This concludes the app’s design. We’ll look at how the app updates
once it’s been executed.

Note that a child parameter merely specifies what is contained
within a widget. A floating action button with a child as an icon is just
a button with an icon inside it.

5. Running the App
To run the app, you must first launch an emulator. To launch an
emulator, choose one from the list of emulators dropdown menu.
Click the Run button after the emulator has started.

This is the app that appears. The count is increased by clicking the
FloatingActionButton . Let's take a closer look at how that
happens.

floatingActionButton: new FloatingActionButton(

onPressed: _incrementCounter,

tooltip: 'Increment',

child: new Icon(Icons.add),

),

The onTap parameter of the FloatingActionButton launches a
function named _incrementCounter() .

void _incrementCounter() {

setState(() {

_counter++;

});

}

The increment itself is rather simple. The number of taps is stored in
a variable called _counter . For its part, setState() is a function that
tells the app that it needs to refresh the page. As a result, without
setState() , the counter variable would increase, while the text
remained unchanged. setState() causes the entire page to be
refreshed.

This was a lot of information to take in, and it’s fine if you need to
read it again to fully get it. To see how things operate, try adjusting a
few values.

For Android developers, notice how this method eliminates the
requirement for view IDs entirely. This is because, unlike Java/Kotlin
development, the text in a field cannot be fetched at any time from
the view itself—and so any modification must be saved in a variable.

Flutter may appear difficult at first, since it is a significant departure
from traditional Android/iOS app development. The good news is
that it automates a number of issues that previously plagued
developers. After becoming accustomed to this style of app
development, the old method appears laborious.

To fully comprehend all aspects of this chapter, you may need to
read it several times. We’ll look at additional Flutter projects in the
following chapters to aid your comprehension.

SEVEN

Flutter Project 2 - Build a Song App

We’ll take a closer look at Flutter Development on the Android
Platform in this chapter, but keep in mind that you’ll require Android
Studio for Android and XCode for iOS. So, before you begin the app
development process, make sure you have Android Studio, Flutter,
and Dart plugins installed. If you haven’t already done so, please
refer to the earlier chapters of this book for help.

Music is an emotional language, and basic song apps have been a
clear need in recent years. Users listen to their favorite songs in
order to reduce stress, improve their creative abilities, and more. You
will inevitably create a song app in your career as a developer, so
consider this chapter practice.

In this chapter, you will learn:

How to integrate a music player into your flutter app in this
chapter.
How to get music from external storage and play it from an
assets file.
How to use a URL to play music (internet).
How to control your music player's volume and how to pause
and play a song.

1. Packages To Be Used
A package is a namespace that holds a collection of classes,
interfaces, and sub-packages that are all of the same kind. Flutter
always supports shared packages, which are provided to the Flutter
and Dart ecosystem by other developers. For this project, we will use
two major packages: the flutter_audio_query and audio_manager
packages.

flutter_audio_query Package

To get the music from our external storage (e.g. mobile phone or
memory card), we’ll utilize the flutter_audio_query package. You can
check it out at pub. dev/ packages/ flutter_audio_query .

audio_manager Package

For its part, the audio_manager package will supply us with a
number of methods and functions to use in our app, such as play,
pause, seek, and increase or decrease volume. This can be
accessed at pub. dev/ packages/ audio_manager .

You can see the demo of our proposed app below:

https://pub.dev/packages/flutter_audio_query
https://pub.dev/packages/audio_manager

2. Setting Up the Project

To do this properly, you’ll need to import the packages as illustrated
below:

import 'package:flutter_audio_query/flutter_audio_query.dart';

import 'package:audio_manager/audio_manager.dart';

Implement alterations to your AndroidManifest.xml file.

<application

...

android:usesCleartextTraffic="true"

...

>

Similarly, modify your build.gradle file.

defaultConfig {

minSdkVersion 23

}

3. Playing Music Using Internet and Assets
Start by creating an audio manager instance as shown below:

var audioManagerInstance = AudioManager.instance;

Playing Music Using the Start Method

To play music, we can use the start() function provided by
AudioManager. A URL, title, description, cover, and auto are all
required.

onTap: () {

audioManagerInstance

.start("song URL", "song title",

desc: "description",

auto: true,

cover: "cover URL")

.then((err) {

print(err);

});

},

To play music from an assets file, simply update the song URL to the
assets file path:

onTap: () {

audioManagerInstance

.start("assets/music.mp3"song title",

desc: "description",

auto: true,

cover: "assets/cover.png")

.then((err) {

print(err);

});

},

4. Getting Music Files from Our External Storage
We’ll use FutureBuilder to get the music files from the external
storage, because FlutterAudioQuery returns a future . GetSongs ,
getSongsFromArtist , getSongsFromAlbum ,
getSongsFromArtistAlbum , and more methods are available in
this class.

In this example, I’ll simply utilize the getSongs method to keep the
logic clean and basic. You are free to use as many as you like.

FutureBuilder(

future: FlutterAudioQuery()

.getSongs(sortType: SongSortType.RECENT_YEAR),

builder: (context, snapshot) {

List<SongInfo> songInfo = snapshot.data;

if (snapshot.hasData) return SongWidget(songList: songInfo);

return Container(

height: MediaQuery.of(context).size.height * 0.4,

child: Center(

child: Row(

mainAxisAlignment: MainAxisAlignment.center,

children: <Widget>[

CircularProgressIndicator(),

SizedBox(

width: 20,

),

Text(

"Loading....",

style: TextStyle(fontWeight: FontWeight.bold),

)

],

),

),

);

},

)

SongWidget

We need a path of a song to be able to play the music from external
memory. The filePath field of the SongInfo class is used to obtain
the path of the music file.

onTap: () {

audioManagerInstance

.start("file://${song.filePath}", song.title,

desc: song.displayName,

auto: true,

cover: song.albumArtwork)

.then((err) {

print(err);

});

},

Also, assess the raw SongWidget Dart hosted by Github at this link:

gist. github. com/ anmolseth06/
11a33c09b1b4f085494835b1b55bb263#file- songwidget-dart

5. Setting Up the Audio
This is the most important part, because this controls various audio
events.

void setupAudio() {

audioManagerInstance.onEvents((events, args) {

switch (events) {

case AudioManagerEvents.start:

_slider = 0;

break;

case AudioManagerEvents.seekComplete:

_slider = audioManagerInstance.position.inMilliseconds /

https://gist.github.com/anmolseth06/11a33c09b1b4f085494835b1b55bb263#file-songwidget-dart

audioManagerInstance.duration.inMilliseconds;

setState(() {});

break;

case AudioManagerEvents.playstatus:

isPlaying = audioManagerInstance.isPlaying;

setState(() {});

break;

case AudioManagerEvents.timeupdate:

_slider = audioManagerInstance.position.inMilliseconds /

audioManagerInstance.duration.inMilliseconds;

audioManagerInstance.updateLrc(args["position"].toString());

setState(() {});

break;

case AudioManagerEvents.ended:

audioManagerInstance.next();

setState(() {});

break;

default:

break;

}

});

}

To initialize your Audio setup, take the steps below.

void initState() {

super.initState();

setupAudio();

}

6. Creating a Control Panel
Everything in a Flutter app is a widget, which is an application in and
of itself. Widgets with changeable and immutable conditions, for
example, are classified as stateless or stateful respectively.

The scaffold widget is a screen component architecture that
comprises all of the common screen elements. With an app bar,
body, menu, and other components, hierarchy can be a tough task.
Flutter's widget saves you a lot of time and work when it comes to
app creation, but it does require you to learn how to create a Widget.
Other widgets should be included in the Widget.

Stateless widgets are immutable, which implies that none of their
properties can be modified and that all of their values are set in
stone. Stateful widgets, on the other hand, are in such states that
may change over the widget’s lifespan. The StatefulWidget class
can be deleted and recreated, but the State class persists
throughout the widget's lifespan. Considering that everything on the
screen in Flutter is a Widget, it makes sense for our ControlPanel to
be a Widget as well—and a StatefulWidget at that. This is because
the ControlPanel communicates with the device and so must know
everything about it, including internal data, functions, and connection
state.

This Widget is designed to keep track of and modify anything that
cannot be accessed directly from the main page (as they are now in
two separate modules), and as such, the control panel must have its

own state, a copy of the required data. This panel has a play/pause
button, previous button, next button, and a songProgress Slider:

Widget bottomPanel() {

return Column(children: <Widget>[

Padding(

padding: EdgeInsets.symmetric(horizontal: 16),

child: songProgress(context),

),

Container(

padding: EdgeInsets.symmetric(vertical: 16),

child: Row(

mainAxisAlignment: MainAxisAlignment.spaceEvenly,

children: <Widget>[

CircleAvatar(

child: Center(

child: IconButton(

icon: Icon(

Icons.skip_previous,

color: Colors.white,

),

onPressed: () => audioManagerInstance.previous()),

),

backgroundColor: Colors.cyan.withOpacity(0.3),

),

CircleAvatar(

radius: 30,

child: Center(

child: IconButton(

onPressed: () async {

if(audioManagerInstance.isPlaying)

audioManagerInstance.toPause();

audioManagerInstance.playOrPause();

},

padding: const EdgeInsets.all(0.0),

icon: Icon(

audioManagerInstance.isPlaying

? Icons.pause

: Icons.play_arrow,

color: Colors.white,

),

),

),

),

CircleAvatar(

backgroundColor: Colors.cyan.withOpacity(0.3),

child: Center(

child: IconButton(

icon: Icon(

Icons.skip_next,

color: Colors.white,

),

onPressed: () => audioManagerInstance.next()),

),

),

],

),

),

]);

}

7. SongDuration
This function is used to format the song’s duration in milliseconds,
but we’ll convert it into the more useful format 00:00. The format is a
string 00:00 in this case. It returns — : — if the duration is nil;
otherwise, it returns the duration in the supplied format.

String _formatDuration(Duration d) {

if (d == null) return "--:--";

int minute = d.inMinutes;

int second = (d.inSeconds > 60) ? (d.inSeconds % 60) : d.inSeconds;

String format = ((minute < 10) ? "0$minute" : "$minute") +

":" +

((second < 10) ? "0$second" : "$second");

return format;

}

8. SongProgress
This is simply a widget that displays the progress of your audio or
video player. This widget connects to a media player more easily
than the Flutter Slider widget. It can also display the buffered status
of streamed media.

Widget songProgress(BuildContext context) {

var style = TextStyle(color: Colors.black);

return Row(

children: <Widget>[

Text(

_formatDuration(audioManagerInstance.position),

style: style,

),

Expanded(

child: Padding(

padding: EdgeInsets.symmetric(horizontal: 5),

child: SliderTheme(

data: SliderTheme.of(context).copyWith(

trackHeight: 2,

thumbColor: Colors.blueAccent,

overlayColor: Colors.blue,

thumbShape: RoundSliderThumbShape(

disabledThumbRadius: 5,

enabledThumbRadius: 5,

),

overlayShape: RoundSliderOverlayShape(

overlayRadius: 10,

),

activeTrackColor: Colors.blueAccent,

inactiveTrackColor: Colors.grey,

),

child: Slider(

value: _slider ?? 0,

onChanged: (value) {

setState(() {

_slider = value;

});

},

onChangeEnd: (value) {

if (audioManagerInstance.duration != null) {

Duration msec = Duration(

milliseconds:

(audioManagerInstance.duration.inMilliseconds *

value)

.round());

audioManagerInstance.seekTo(msec);

}

},

)),

),

),

Text(

_formatDuration(audioManagerInstance.duration),

style: style,

),

],

);

}

Conclusion
In comparison to prior extensive coding sessions, designing simple
apps with Flutter 2 takes only a few minutes. You come up with a
feature, implement it, and move on to the next. In the next chapters,
we will build on more projects with Flutter to further demonstrate this.

EIGHT

Flutter Project 3 - Build a Login UI

The user interface (UI) is the set of screens, pages, and visual
elements—such as buttons and icons—that allow a person to
engage with a product or service at its most basic level. In this
chapter, we’ll use the Flutter SDK to create a lovely Login UI.

Prerequisites
This project requires a basic understanding of Flutter and Dart.
Fortunately, we went over this in great detail in the previous chapters
of this book. Knowledge of JavaScript, particularly ES6 features, will
be beneficial.

If you haven’t already, you should install the Visual Studio
Code editor on your computer. We’ll use VSC for this project,
because we’ve already used the Audio Studio Code editor. It
can be obtained here: code. visualstudio. com/ Download
The Flutter plugin for Visual Studio Code also needs to be
downloaded and installed. Chapter 5 contains instructions for
this, and more information can be found at flutter. io/ docs/
get- started/ editor? tab= vscode .

https://code.visualstudio.com/Download
https://flutter.io/docs/get-started/editor?tab=vscode

Project Setup

We’ll mostly concentrate on developing our app here. If you need to,
look at flutter. io/ docs/ get- started/ install for further information on
setting up your environment properly. This site is quite useful and will
walk you through installing Flutter SDK on your PC (if you haven’t
already) and your operating system.

To create a new project, press ctrl+shift+p or cmd+shift+p in your
code editor and name it. You could also simply run flutter create
your_project_name . After that, you'll have a brand-new Flutter
project.

Directory Structure

Drag the project into Visual Studio Code once it’s been created.
We’re adopting Visual Studio Code because it provides great Flutter
support, including Dart syntax, code completion, and debugging
tools (which we’ll explore in depth later). You should see the
following directory structure by default:

android : This folder contains Android-related files. If you’ve
ever worked on a cross-platform mobile app, this, along with
the ios folder, should be rather familiar.
ios : The location of iOS-related files.
lib : This is where you’ll spend the most of your time. It
includes a main.dart file by default, which is the Flutter app’s
entry point.
test : This is where you’ll place the app’s unit testing code. In
this chapter, we won’t be working on this.
pubspec.yaml : this file specifies your app’s version and
build number. It’s also the directory where your
dependencies are defined.

https://flutter.io/docs/get-started/install

There are several more folders and files in this directory, but they
aren’t necessary for the purposes of this chapter, and you won’t
need them most of the time.

1. Definition of Assets
Both code and assets can be included in Flutter apps (sometimes
called resources). A file that is bundled and published with your
program, which is available at runtime, is referred to as an asset .
Static data (for example, JSON files), configuration files, icons, and
images (JPEG, WebP, GIF, animated WebP/GIF, PNG, BMP, and
WBMP) are all common types of assets.

To identify assets required by an app, Flutter uses the
pubspec.yaml file, which is located at the root of your project. To
define your assets, navigate to the pubspec.yaml file and make the
following changes:

//../pubspec.yaml

name: flutter_login_ui

description: A new Flutter project.

The following defines the version and build number for your
application.

A version number is three numbers separated by dots, like 1.2.43

followed by an optional build number separated by a +.

Both the version and the builder number may be overridden in flutter

build by specifying --build-name and --build-number, respectively.

Read more about versioning at semver.org.

version: 1.0.0+1

environment:

sdk: ">=2.0.0-dev.68.0 <3.0.0"

dependencies:

flutter:

sdk: flutter

The following adds the Cupertino Icons font to your application.

Use with the CupertinoIcons class for iOS style icons.

cupertino_icons: ^0.1.2

dev_dependencies:

flutter_test:

sdk: flutter

For information on the generic Dart part of this file, see the

following page: https://www.dartlang.org/tools/pub/pubspec

The following section is specific to Flutter.

flutter:

The following line ensures that the Material Icons font is

included with your application, so that you can use the icons in

the material Icons class.

uses-material-design: true

To add assets to your application, add an assets section, like this:

assets:

- logo.png

fonts:

- family: Montserrat

fonts:

- asset: fonts/Montserrat-Regular.ttf

In the root of your Flutter project, create assets and fonts directories.
Their assets and fonts are available at github. com/ Ethiel97/ flutter
login ui/tree/master/assets and github. com/ Ethiel97/ flutter login
ui/tree/master/fonts , respectively. We uploaded a logo.png and
the Montserrat-Regular.ttf font to our ../assets and ../fonts folders,
respectively. We’ll use these assets in our app later on in the project.

2. Build the UI
Building our UI starts from the ..lib/main.dart file. We begin by
importing the Material library from Flutter as shown below:

import 'package:flutter/material.dart';

The MaterialApp , Scaffold , and AppBar widgets that we use in
our app are included in this package. The methods we’re utilizing are
either from a library you’ve imported or are built into the Flutter
framework. After that, move on to the line that says:

void main() => runApp(MyApp())

As this is our program’s entrance point, it must always be defined if
you want to render anything on the screen. If you’re familiar with
JavaScript ES6 features, you’ll recognize the fat-arrow (=>) . We're
actually running the runApp() function inside the main() method

https://github.com/Ethiel97/flutter
https://github.com/Ethiel97/flutter

because it's a more compact way of declaring functions. The MyApp
widget is made the root of the widget tree with this function. The
widget, along with its descendants, is effectively rendered into the
screen.

Remember that with Flutter, practically everything is a widget, and
each one can have its own set of properties and child widgets. The
two primary types of widgets have been discussed in previous
chapters: these are the stateful and stateless widgets. The former
manages its own internal state and keeps track of it, while the latter
doesn’t and is prone to change.

The MyApp widget is the next thing we need to define at this point.
To do so, make the following changes to your MyApp class ,
changing only the title property:

class MyApp extends StatelessWidget {

// This widget is the root of your application.

@override

Widget build(BuildContext context) {

return MaterialApp(

title: 'Flutter login UI',

theme: ThemeData(

// This is the theme of your application.

//

// Try running your application with "flutter run". You'll see the

// application has a blue toolbar. Then, without quitting the app, try

// changing the primarySwatch below to Colors.green and then invoke

// "hot reload" (press "r" in the console where you ran "flutter run",

// or simply save your changes to "hot reload" in a Flutter IDE).

// Notice that the counter didn't reset back to zero; the application

// is not restarted.

primarySwatch: Colors.blue,

),

home: MyHomePage(title: 'Flutter Login'),

);

}

}

The code above creates a new MaterialApp widget with the title,
theme, and home page of our app. It’s a stateless widget, and to
create this, all you need to do add the following code to the
StatelessWidget class :

class MyApp extends StatelessWidget {

// ...

}

Next, we’ll define our home widget , which will be a stateful widget
this time—meaning it will include fields that can affect how it
appears. There is no need for you to make any alterations here:

class MyHomePage extends StatefulWidget {

MyHomePage({Key key, this.title}) : super(key: key);

// This widget is the home page of your application. It is stateful,
meaning

// that it has a State object (defined below) that contains fields that
affect

// how it looks.

// This class is the configuration for the state. It holds the values (in
this

// case the title) provided by the parent (in this case the App widget)
and

// used by the build method of the State. Fields in a Widget subclass
are

// always marked "final".

final String title;

@override

_MyHomePageState createState() => _MyHomePageState();

}

The state of our MyHomePage widget will be defined by the
following class. Change it to something like this:

class _MyHomePageState extends State<MyHomePage> {

TextStyle style = TextStyle(fontFamily: 'Montserrat', fontSize: 20.0);

@override

Widget build(BuildContext context) {

final emailField = TextField(

obscureText: false,

style: style,

decoration: InputDecoration(

contentPadding: EdgeInsets.fromLTRB(20.0, 15.0, 20.0, 15.0),

hintText: "Email",

border:

OutlineInputBorder(borderRadius: BorderRadius.circular(32.0))),

);

final passwordField = TextField(

obscureText: true,

style: style,

decoration: InputDecoration(

contentPadding: EdgeInsets.fromLTRB(20.0, 15.0, 20.0, 15.0),

hintText: "Password",

border:

OutlineInputBorder(borderRadius: BorderRadius.circular(32.0))),

);

final loginButon = Material(

elevation: 5.0,

borderRadius: BorderRadius.circular(30.0),

color: Color(0xff01A0C7),

child: MaterialButton(

minWidth: MediaQuery.of(context).size.width,

padding: EdgeInsets.fromLTRB(20.0, 15.0, 20.0, 15.0),

onPressed: () {},

child: Text("Login",

textAlign: TextAlign.center,

style: style.copyWith(

color: Colors.white, fontWeight: FontWeight.bold)),

),

);

return Scaffold(

body: Center(

child: Container(

color: Colors.white,

child: Padding(

padding: const EdgeInsets.all(36.0),

child: Column(

crossAxisAlignment: CrossAxisAlignment.center,

mainAxisAlignment: MainAxisAlignment.center,

children: <Widget>[

SizedBox(

height: 155.0,

child: Image.asset(

"assets/logo.png",

fit: BoxFit.contain,

),

),

SizedBox(height: 45.0),

emailField,

SizedBox(height: 25.0),

passwordField,

SizedBox(

height: 35.0,

),

loginButon,

SizedBox(

height: 15.0,

),

],

),

),

),

),

);

}

}

TextStyle style = TextStyle(fontFamily: 'Montserrat', fontSize: 20.0);

Now, we create a unique text style that will be applied to our UI
elements. As a fontFamily , we adopt the Montserrat font. Also, we
need to override the construct function that returns our main widget
inside the class’s body.

Afterwards, we define our user interface elements, which should
include two text fields and a login button.

emailField

final emailField = TextField(

style: style,

decoration: InputDecoration(

contentPadding: EdgeInsets.fromLTRB(20.0, 15.0, 20.0, 15.0),

hintText: "Email",

border:

OutlineInputBorder(borderRadius: BorderRadius.circular(32.0))),

);

The final keyword merely indicates that the object value will not be
changed during the app’s lifetime. We use the TextField widget to
create an input, then add a hint, some style, and some decoration.
We employ padding to create an empty space within the field’s
surrounding area. We also include a borderRadius to create a
rounded input field.

passwordField

final passwordField = TextField(

obscureText: true,

style: style,

decoration: InputDecoration(

contentPadding: EdgeInsets.fromLTRB(20.0, 15.0, 20.0, 15.0),

hintText: "Password",

border:

OutlineInputBorder(borderRadius: BorderRadius.circular(32.0))),

);

The password field’s definition is nearly identical to the previous one,
with the exception that we added the property obscureText: true to
hide input as we type, like a password field should.

loginButton

final loginButon = Material(

elevation: 5.0,

borderRadius: BorderRadius.circular(30.0),

color: Color(0xff01A0C7),

child: MaterialButton(

minWidth: MediaQuery.of(context).size.width,

padding: EdgeInsets.fromLTRB(20.0, 15.0, 20.0, 15.0),

onPressed: () {},

child: Text("Login",

textAlign: TextAlign.center,

style: style.copyWith(

color: Colors.white, fontWeight: FontWeight.bold)),

),

);

To simply add a shadow(elevation) to our button, we use the
Material widget . To make a rounded button, we additionally add a

radius. Finally, we add a button as a child to our Material widget ,
which also accepts a Text widget . When our button is clicked, the
onPressed property is set to true , and a function is called.

After that, we combined all of these widgets into our Scaffold
widget . Within a Column widget , our form items are vertically
oriented. In most cases, the SizedBox widget is just used for
spacing purposes. To establish a height for an image, we place it
inside a SizedBox .

return Scaffold(

body: Center(

child: Container(

color: Colors.white,

child: Padding(

padding: const EdgeInsets.all(36.0),

child: Column(

crossAxisAlignment: CrossAxisAlignment.center,

mainAxisAlignment: MainAxisAlignment.center,

children: <Widget>[

SizedBox(

height: 155.0,

child: Image.asset(

"assets/logo.png",

fit: BoxFit.contain,

),

),

SizedBox(height: 45.0),

emailField,

SizedBox(height: 25.0),

passwordField,

SizedBox(

height: 35.0,

),

loginButon,

SizedBox(

height: 15.0,

),

],

),

),

),

),

);

The app should be ready to use once everything is completed. If the
app isn’t currently running, start an Android emulator or an iOS
simulator, and run the following command from the project directory’s
root:

flutter run

Conclusion
That is all there is to it. You’ve learned how to make a gorgeous login
UI using Flutter in this chapter. You also learned some basic Flutter
SDK ideas, and I hope you gained the knowledge you need to
continue exploring Flutter. You can find the code used in this tutorial
on its GitHub repo at this link:

github. com/ Ethiel97/ flutter_login_ui

https://github.com/Ethiel97/flutter_login_ui

NINE

Flutter Project 4 - Build a Name Generator

We’ll write a simple app that generates suggested names for a small
business or firm in this chapter. A user should be able to select and
unselect names at the end of this project, retaining the right ones.
The algorithm generates roughly nine to ten alternatives at a time,
and additional names are generated as the user scrolls. A user’s
ability to scroll is unrestricted.

1. Create a Suitable Flutter Environment
To finish this project, you’ll need to have installed the Flutter SDK
and an editor. (This is under the presumption that you will be using
Android Studio, but if not, please feel free to use whichever editor
you want.) You can use any of the following devices to run the
codes:

A physical Android or iOS device that has been set to
development mode and linked to your computer.
The iOS Simulator (this would require the installation of
Xcode tools).
An emulator for your Android (this needs to be setup in
Android Studio).

In Chapter 5, we discussed the above-mentioned installation
procedures. If you need to refresh your memory, please go check it
out once more.

2. Create the Starter Flutter App
Make a simple Flutter app using a template. You can create a project
labelled startup_namer and migrate to null safety as below.

$ flutter create startup_namer

$ cd startup_namer

$ dart migrate --apply-changes

You’ll largely be editing the contents of lib/main.dart , which, as you
know, contains the Dart code. Substitute all of the code in
lib/main.dart with the code below, which shows “Hello World” in the
center of your screen.

import 'package:flutter/material.dart';

void main() => runApp(MyApp());

class MyApp extends StatelessWidget {

@override

Widget build(BuildContext context) {

return MaterialApp(

title: 'Welcome to Flutter',

home: Scaffold(

appBar: AppBar(

title: const Text('Welcome to Flutter'),

),

body: const Center(

child: const Text('Hello World'),

),

),

);

}

}

Indentation can become twisted when inserting code into your app.
The following Flutter tools will help you fix it:

IntelliJ DEA/Android Studio: If you are using this, all you
have to do is right-click the Dart code and choose Reformat
Code with dartfmt .
Visual Studio Code: If you are using this, select Format
Document from the context menu by right-clicking.
Terminal: Run flutter format <filename> to fix any
indentation errors.

Now, run the app. Depending on your device, you ought to see
Android, iOS, or web output at this point.

3. Use a Third-Party Package
This step will introduce you to the english_words open-source
package. This includes a few thousand of the most commonly used
English terms, as well as several useful functions. The
english_words package, along with many other open-source
packages, can be found at pub.dev . A Flutter app’s assets are
managed using the pubspec file. Add english_words: ^4.0.0
(english_words 4.0.0 or higher) to the dependencies list in
pubspec.yaml :

dependencies:

flutter:

sdk: flutter

cupertino_icons: ^1.0.2

english_words: ^4.0.0 # add this line

Click Packages get while viewing the pubspec in Android Studio’s
editing interface. The package is now included in your project. In the
console, you should see the following:

flutter packages get

Running "flutter packages get" in startup_namer...

Process finished with exit code 0

Executing Dart pub get also creates a pubspec.lock file that
contains a list of all packages pulled into the project, along with their
version numbers. Import the new package into lib/main.dart :

import 'package:flutter/material.dart';

import 'package:english_words/english_words.dart'; // Add this line.

Android Studio suggests libraries for you to import as you type. It
also turns the import string gray, indicating when the imported library
isn’t being used. Instead of using the usual “Hello World,” for this
project, utilize the English words package to construct the text and
make the following modifications:

import 'package:flutter/material.dart';

import 'package:english_words/english_words.dart';

void main() => runApp(MyApp());

class MyApp extends StatelessWidget {

@override

Widget build(BuildContext context) {

final wordPair = WordPair.random(); // Add this line.

return MaterialApp(

title: 'Welcome to Flutter',

home: Scaffold(

appBar: AppBar(

title: Text('Welcome to Flutter'),

),

body: Center(// Drop the const, and

//child: Text('Hello World'), // Replace this text...

child: Text(wordPair.asPascalCase), // With this text.

),

),

);

}

}

If the app is running, hot reload to update the running app. Hot
reload works by injecting updated source code files into a Dart
Virtual Machine that is already executing (VM). The Flutter
framework instantly rebuilds the widget tree once the VM updates
classes with new versions of fields and functions, letting you see
immediately the effects of your modifications.

The goal of hot reloading is to keep the app running while injecting
new versions of the files you edited in the background. You won’t
lose any state this way, which is especially beneficial if you’re
experimenting with the UI. To perform a hot reload, type r from the
command line. You should see a different word pair, picked at
random, in the running app each time you click hot reload or save
the project. This happens because the word pairing is produced
inside the build method whenever the MaterialApp requires
rendering or when the platform is toggled in the Flutter Inspector.

Look for typos and correct them if your program isn’t working
properly.

4. Add a Stateful Widget
In this step, you’ll add the RandomWords stateful widget , which
will produce the _RandomWordsState State class . RandomWords
will then be used as a child within the existing MyApp stateless
widget. Follow the steps below to do so:

Make a Stateful Widget's Boilerplate Code

Outside of MyApp, this can go anywhere in the file, but the solution
should put it somewhere at the bottom. Place your cursor after all of
the code in lib/main.dart and click Return a few times to start on a
new line. Start typing stful in your IDE. At this point, the editor
should ask if you want to generate a stateful widget. To accept, press
Return . The cursor will be set for you to input the name of your
stateful widget, and the boilerplate code you would need for two
classes should appear.

As the Name of Your Widget, Type RandomWords

The IDE immediately updates the accompanying State class, naming
it _RandomWordsState , once you’ve provided RandomWords as
the name of the stateful widget. The state class’s name is also
prefixed with an underscore by default.

The IDE also automatically extends State<RandomWords> ,
showing that you’re using a generic State class tailored for
RandomWords. The RandomWords widget’s state is maintained
here, and it contains the majority of the app’s functionality. This class
saves the created word pair list, which expands infinitely as the user

scrolls, and favors word pairs as the user adds or removes them
from the list by flicking the heart icon later in this project.

Both classes now have the following appearance:

class RandomWords extends StatefulWidget {

@override

_RandomWordsState createState() => _RandomWordsState();

}

class _RandomWordsState extends State<RandomWords> {

@override

Widget build(BuildContext context) {

return Container();

}

}

In _RandomWordsState , update the build() method. Substitute the
following two lines for return Container() :

class _RandomWordsState extends State<RandomWords> {

@override

Widget build(BuildContext context) {

final wordPair = WordPair.random(); // NEW

return Text(wordPair.asPascalCase); // NEW

}

}

Make the following changes to MyApp to remove the word-
generation code:

class MyApp extends StatelessWidget {

@override

Widget build(BuildContext context) {

final wordPair = WordPair.random(); // DELETE

return MaterialApp(

title: 'Welcome to Flutter',

home: Scaffold(

appBar: AppBar(

title: Text('Welcome to Flutter'),

),

body: Center(

//child: Text(wordPair.asPascalCase), // REPLACE with...

child: RandomWords(), // ...this line

),

),

);

}

}

Hot reload the app once again.

5. Create an Infinite Scrolling ListView
Expand _RandomWordsState in this step to generate and display a
list of word pairings. The list (displayed in a ListView widget)
increases indefinitely as the user scrolls. ListView’s builder factory
constructor allows you to create a list view on demand.

To the _RandomWordsState class, add some state variables.
Create a _suggestions list to keep track of proposed word pairs.
Also, add the _biggerFont variable to increase the text size.

class _RandomWordsState extends State<RandomWords> {

final _suggestions = <WordPair>[]; // NEW

final _biggerFont = const TextStyle(fontSize: 18); // NEW

...

}

The _RandomWordsState class will then need to have a
_buildSuggestions() function added to it. This is what creates the
ListView that displays the word pairing suggestions.

The ListView class has a builder field called itemBuilder , which is a
factory builder with an anonymous callback function. The function is
called with two parameters: the BuildContext and the row iterator, i .

The iterator starts at 0 and increases by 1 for each suggested word
combination, each time the function is called. This model allows the
user’s suggestion list to grow as they scroll down. The complete
_buildSuggestions function should be added.

Add the following function to the _RandomWordsState class,
eliminating the comments if you prefer:

Widget _buildSuggestions() {

return ListView.builder(

padding: const EdgeInsets.all(16),

// The itemBuilder callback is called once per suggested

// word pairing, and places each suggestion into a ListTile

// row. For even rows, the function adds a ListTile row for

// the word pairing. For odd rows, the function adds a

// Divider widget to visually separate the entries. Note that

// the divider may be difficult to see on smaller devices.

itemBuilder: (BuildContext _context, int i) {

// Add a one-pixel-high divider widget before each row

// in the ListView.

if (i.isOdd) {

return Divider();

}

// The syntax "i ~/ 2" divides i by 2 and returns an

// integer result.

// For example: 1, 2, 3, 4, 5 becomes 0, 1, 1, 2, 2.

// This calculates the actual number of word pairings

// in the ListView,minus the divider widgets.

final int index = i ~/ 2;

// If you've reached the end of the available word

// pairings...

if (index >= _suggestions.length) {

// ...then generate 10 more and add them to the

// suggestions list.

_suggestions.addAll(generateWordPairs().take(10));

}

return _buildRow(_suggestions[index]);

}

);

}

_BuildRow is called once per word pair by the _buildSuggestions
function. This function creates a ListTile for each new pair, allowing
you to make the rows more appealing. Also, a _buildRow function
should be added to _RandomWordsState :

Widget _buildRow(WordPair pair) {

return ListTile(

title: Text(

pair.asPascalCase,

style: _biggerFont,

),

);

}

_RandomWordsState 's construct method should be updated.
Instead of contacting the word-generation library directly, use
_buildSuggestions() :

@override

Widget build(BuildContext context) {

//final wordPair = WordPair.random(); // Delete these...

//return Text(wordPair.asPascalCase); // ... two lines.

return Scaffold (// Add from here...

appBar: AppBar(

title: Text('Startup Name Generator'),

),

body: _buildSuggestions(),

); // ... to here.

}

Change the title of MyApp , remove the AppBar , and change the
home property to a RandomWords widget in the build function .

@override

Widget build(BuildContext context) {

return MaterialApp(

title: 'Startup Name Generator',

home: RandomWords(),

);

}

Run the application. Regardless of how far you scroll, you should
see a list of word combinations.

6. Add Icons to the List
You’ll add heart icons to each row in this phase. You’ll make them
tappable, and save the favorites in the next stage. To
_RandomWordsState , add a _saved Set . The user’s liked word
pairs are saved in this Set. Since a correctly constructed Set does
not allow duplicate entries, it is preferable over a List.

class _RandomWordsState extends State<RandomWords> {

final _suggestions = <WordPair>[];

final _saved = <WordPair>{}; // NEW

final _biggerFont = TextStyle(fontSize: 18.0);

...

}

Add an alreadySaved check to the _buildRow function to ensure
that a word pairing hasn't already been saved to favorites.

Widget _buildRow(WordPair pair) {

final alreadySaved = _saved.contains(pair); // NEW

...

}

You’ll also add heart-shaped icons to the ListTile objects in
_buildRow() to enable liking. The ability to interact with the heart
icons will be included in the next step.

After the text, add the icons as seen below:

Widget _buildRow(WordPair pair) {

final alreadySaved = _saved.contains(pair);

return ListTile(

title: Text(

pair.asPascalCase,

style: _biggerFont,

),

trailing: Icon(// NEW from here...

alreadySaved ? Icons.favorite : Icons.favorite_border,

color: alreadySaved ? Colors.red : null,

), // ... to here.

);

}

Hot reload the app. Each row should now have open hearts.

7. Activating Interactivity
The heart icons will be made tappable in this step. When a user taps
an entry in the list to toggle between likes, that word combination is
added to or removed from a saved favorites list.

To make this possible, you’ll need to change the _buildRow method.
If you’ve already added a word entry to your favorites, touching it
again removes it. The function executes setState() when a tile is
pressed to alert the framework that the status has changed.

As illustrated below, add onTap to the _buildRow method:

Widget _buildRow(WordPair pair) {

final alreadySaved = _saved.contains(pair);

return ListTile(

title: Text(

pair.asPascalCase,

style: _biggerFont,

),

trailing: Icon(

alreadySaved ? Icons.favorite : Icons.favorite_border,

color: alreadySaved ? Colors.red : null,

),

onTap: () { // NEW lines from here...

setState(() {

if (alreadySaved) {

_saved.remove(pair);

} else {

_saved.add(pair);

}

});

}, // ... to here.

);

}

Hot reload the app. You should be able to favorite or unfavorite an
entry by tapping any tile. Now when you tap a tile, an ink splash
motion should appear from the tap spot.

8. Navigating to a New Screen
The Navigator in Flutter is in charge of a stack that contains the
app’s routes. The presentation of a route is updated when it is
pushed into the Navigator’s stack. When you select a route from the
Navigator’s stack, the display returns to the previous route.

In the build function for _RandomWordsState , you’ll then add a list
icon to the AppBar. When the user hits the list icon, a new route is
delivered to the Navigator, containing the saved favorites and
showing the icon. To the build method, add the icon and its
accompanying action:

class _RandomWordsState extends State<RandomWords> {

...

@override

Widget build(BuildContext context) {

return Scaffold(

appBar: AppBar(

title: Text('Startup Name Generator'),

actions: [

IconButton(icon: Icon(Icons.list), onPressed: _pushSaved),

],

),

body: _buildSuggestions(),

);

}

...

}

As illustrated by the square brackets, certain widget attributes take a
single widget (child), whereas others, such as action, take an array

of widgets (children) ([]) . The _RandomWordsState class now
includes a _pushSaved() function.

void _pushSaved() {

}

Hot reload the app. In the app bar, the list icon is displayed. Since
the _pushSaved function is now empty, tapping this at this point has
no effect. You’ll need to create a route and add it to the Navigator’s
stack. The screen should change to show the new path as a result of
this activity. In an anonymous function, the content for the new page
is built in MaterialPageRoute 's builder property.

As demonstrated here, Navigator.push pushes the route to the
Navigator’s stack. The IDE will warn you that your code is invalid, but
you’ll solve that in the next section.

void _pushSaved() {

Navigator.of(context).push(

);

}

The MaterialPageRoute and associated constructor will now be
added. Include the code for creating the ListTile rows. ListTile's
divideTiles() function creates a horizontal gap between ListTiles.

The final rows are stored in the split variable, which was transformed
to a list via the toList convenience function () . As demonstrated
below, add the following code:

void _pushSaved() {

Navigator.of(context).push(

MaterialPageRoute<void>(

// NEW lines from here...

builder: (BuildContext context) {

final tiles = _saved.map(

(WordPair pair) {

return ListTile(

title: Text(

pair.asPascalCase,

style: _biggerFont,

),

);

},

);

final divided = tiles.isNotEmpty

? ListTile.divideTiles(context: context, tiles: tiles).toList()

: <Widget>[];

return Scaffold(

appBar: AppBar(

title: Text('Saved Suggestions'),

),

body: ListView(children: divided),

);

}, // ...to here.

),

);

}

The new route named SavedSuggestions is returned by the builder
property when it returns the Scaffold containing that app bar. The
new route’s body is made up of a ListView that contains the ListTiles
rows. A separator runs down the middle of each row.

Reload the app quickly. Choose some of your favorites, and press
the list button in the app bar to add them to your favorites list. The
favorites are included in the new route. The Navigator modifies the
app bar by adding a Back button. Tap the back button to return to
the home route.

9. Modify the UI With Themes
You’ll change the theme of the app at this phase. The theme
determines how your app looks and feels. You can alter the theme to
fit your branding or utilize the default theme, which is dependent on
the physical device or emulator you’re using.

By specifying the ThemeData class, you may simply modify an app’s
theme. The app will use the default theme, but the primary color
should be changed to white from the MyApp class:

class MyApp extends StatelessWidget {

@override

Widget build(BuildContext context) {

return MaterialApp(

title: 'Startup Name Generator',

theme: ThemeData(// Add the 3 lines from here...

primaryColor: Colors.white,

), // ... to here.

home: RandomWords(),

);

}

}

Conclusion
Hot reload the app one last time. The entire background of the
finished app, including the app bar, should be white. The colors class
in the Material library provides many color constants that you can
play with.

We just completed another Flutter app that runs on iOS and Android
by writing Dart code, using hot reload for a faster development cycle,
and implementing a stateful widget to add interactivity to the app. We
also created a route, added logic for moving between the home route
and the new route, and changed the look of the app’s UI using
themes. Hopefully, you learned a thing or two. We’ll look at one more
project using flutter in the next chapter.

TEN

Flutter Project 5 - Build an Ecommerce
App

This chapter will focus on using Flutter to create an ecommerce app.
Simply put, ecommerce (electronic commerce) is the buying and
selling of goods and services, as well as the transmission of
payments or data, over an electronic network, most commonly the
internet. Business-to-business (B2B), business-to-consumer (B2C),
consumer-to-consumer, and consumer-to-business transactions are
all possible. Since the Flutter language allows for the construction of
ecommerce mobile apps, we’ll explore the creation of one in this
chapter.

1. Set Up Your Environment
This step presupposes that you have already installed the Flutter
SDK. Also, we’ll be using the Visual Studio Code editor for this, and
as such, its plugins should be set up in your environment. If you
need any help doing this, revert to the fifth chapter of this book.

2. Create Your Flutter Project
Now to begin, we must create a project with the name
flutterecommerce in Visual Studio Code. Follow these procedures

to create this new project in Visual Studio Code:

Select View → Command Palette from the menu bar.
Select Flutter: New Project after typing “flutter.”
Press Enter after entering a project name, such as
“flutterecommerce .”
Create or choose the parent directory for the new project
folder.
Allow for the completion of the project creation process and
the appearance of the main.dart file.

3. Import Your Package
Add the intl and uuid packages to your project after that. This is
what your pubspec.yaml file should look like:

name: flutterecommerse

description: A new Flutter project.

The following defines the version and build number for your
application.

A version number is three numbers separated by dots, like 1.2.43

followed by an optional build number separated by a +.

Both the version and the builder number may be overridden in flutter

build by specifying --build-name and --build-number, respectively.

In Android, build-name is used as versionName while build-number
used as versionCode.

Read more about Android versioning at
https://developer.android.com/studio/publish/versioning

In iOS, build-name is used as CFBundleShortVersionString while
build-number used as CFBundleVersion.

Read more about iOS versioning at

https:// developer. apple. com/ library/ archive/ documentation/
General/ Reference/ InfoPlistKeyReference/ Articles/
CoreFoundationKeys.html

version: 1.0.0+1

environment:

sdk: ">=2.1.0 <3.0.0"

dependencies:

flutter:

sdk: flutter

The following adds the Cupertino Icons font to your application.

Use with the CupertinoIcons class for iOS style icons.

cupertino_icons: ^0.1.2

intl: ^0.15.8

uuid: 2.0.0

dev_dependencies:

flutter_test:

sdk: flutter

For information on the generic Dart part of this file, see the

https://developer.apple.com/library/archive/documentation/General/Reference/InfoPlistKeyReference/Articles/

following page: https://dart.dev/tools/pub/pubspec

The following section is specific to Flutter.

flutter:

The following line ensures that the Material Icons font is

included with your application, so that you can use the icons in

the material Icons class.

uses-material-design: true

To add assets to your application, add an assets section, like this:

assets:

- images/a_dot_burr.jpeg

- images/a_dot_ham.jpeg

An image asset can refer to one or more resolution-specific
"variants", see

https://flutter.dev/assets-and-images/#resolution-aware.

For details regarding adding assets from package dependencies,
see

https://flutter.dev/assets-and-images/#from-packages

To add custom fonts to your application, add a fonts section here,

in this "flutter" section. Each entry in this list should have a

"family" key with the font family name, and a "fonts" key with a

list giving the asset and other descriptors for the font. For

example:

fonts:

- family: Schyler

fonts:

- asset: fonts/Schyler-Regular.ttf

- asset: fonts/Schyler-Italic.ttf

style: italic

- family: Trajan Pro

fonts:

- asset: fonts/TrajanPro.ttf

- asset: fonts/TrajanPro_Bold.ttf

weight: 700

For details regarding fonts from package dependencies,

see https://flutter.dev/custom-fonts/#from-packages

Then, in the command palette, we select “get package ” and wait for
the procedure to complete. We need to develop data modeling after
we create pubspec.yaml . So make a new directory for models files
in [projectname]/lib/[modelname] . We'll then create item.dart with
the following static data:

import 'package:flutter/material.dart';

import 'package:intl/intl.dart';

class Item {

String id;

String name;

String description;

int price;

bool inStock;

String imageUrl;

Item(

{this.id,

this.name,

this.description,

this.price,

this.inStock,

this.imageUrl});

String get formattedAvailability => inStock ? "Available" : "Out of
stock";

String get formattedPrice => Item.formatter.format(this.price);

Color get availabilityColor => inStock ? Colors.grey : Colors.red;

static final formatter =

NumberFormat.currency(locale: 'id_ID', symbol: "Rp ");

static List<Item> get dummyItems => [

Item(

id: "1",

name: "iPhone X (Product RED) ",

description: 'More magical than ever.',

price: 12499999,

inStock: true,

imageUrl:

'https://store.storeimages.cdn-apple.com/4982/as-
images.apple.com/is/image/AppleInc/aos/published/images/i/
ph/iphone/xr/iphone-xr-red-select-201809?
wid=940&hei=1112&fmt=png-alpha&qlt=80&.v=1551226038669'),

Item(

id: "2",

name: "AirPods with Wireless Charging Case",

description: 'More magical than ever.',

price: 2999999,

inStock: true,

imageUrl:

'https://store.storeimages.cdn-apple.com/4982/as-
images.apple.com/is/image/AppleInc/aos/published/images/
M/RX/MRXJ2/MRXJ2?
wid=1144&hei=1144&fmt=jpeg&qlt=95&op_usm=0.5%2C0.5&
.v=1551489675083'),

Item(

id: "3",

name: "iPhone X Max (GOLD)",

description: 'More magical than ever.',

price: 18999999,

inStock: true,

imageUrl:

'https://store.storeimages.cdn-apple.com/4982/as-
images.apple.com/is/image/AppleInc/aos/published/images/i/
ph/iphone/xs/iphone-xs-max-gold-select-2018?
wid=940&hei=1112&fmt=png-alpha&qlt=80&.v=1550795409154'),

Item(

id: "4",

name: "iPhone X (SILVER)",

description: 'More magical than ever.',

price: 14999999,

inStock: true,

imageUrl:

'https://store.storeimages.cdn-apple.com/4982/as-
images.apple.com/is/image/AppleInc/aos/published/images/i/
ph/iphone/xs/iphone-xs-silver-select-2018?
wid=940&hei=1112&fmt=png-alpha&qlt=80&.v=1550795411708'),

Item(

id: "5",

name: "iPad Pro (SPACE GRAY)",

description: 'More magical than ever.',

price: 13999999,

inStock: true,

imageUrl:

'https://store.storeimages.cdn-apple.com/4982/as-
images.apple.com/is/image/AppleInc/aos/published/images/i/
pa/ipad/pro/ipad-pro-11-select-cell-spacegray-201810?
wid=940&hei=1112&fmt=png-alpha&qlt=80&.v=1540591731427'),

Item(

id: "6",

name: "Apple Watch Silver Aluminum (44 mm)",

description: 'More magical than ever.',

price: 8999999,

inStock: false,

imageUrl:

'https://store.storeimages.cdn-apple.com/4982/as-
images.apple.com/is/image/AppleInc/aos/published/images/
4/4/44/alu/44-alu-silver-sport-white-s4-1up?
wid=940&hei=1112&fmt=png-alpha&qlt=80&.v=1539190366920'),

];

}

Create shopping_cart.dart afterwards, as things will need to be
purchased:

import 'item.dart';

import 'package:uuid/uuid.dart';

class ShoppingCart {

final orderId = Uuid().v4();

List<Item> items = [];

bool get isEmpty => items.isEmpty;

int get numOfItems => items.length;

int get totalPrice {

int totalPrice = 0;

items.forEach((i) {

totalPrice += i.price;

});

return totalPrice;

}

String get formattedTotalPrice {

if (isEmpty) {

return Item.formatter.format(0);

}

return Item.formatter.format(this.totalPrice);

}

bool isExists(item) {

if (items.isEmpty) {

return false;

}

final indexOfItem = items.indexWhere((i) => item.id == i.id);

return indexOfItem >= 0;

}

void add(Item item) {

if (items.isEmpty) {

items.add(item);

return;

}

if (!this.isExists(item)) {

items.add(item);

}

}

void remove(Item item) {

if (items.isEmpty) return;

final indexOfItem = items.indexWhere((i) => item.id == i.id);

if (indexOfItem >= 0) {

items.removeAt(indexOfItem);

}

}

Map<String, dynamic> get toMap {

final List<Map<String, dynamic>> items = this

.items

.map((i) => {

'id': i.id,

'name': i.name,

'description': i.description,

'price': i.price,

'inStock': i.inStock,

'imageUrl': i.imageUrl

})

.toList();

return {"orderId": this.orderId, "items": items, "total": this.totalPrice};

}

}

Then, if we’re going to cart some products till checkout, we’ll need
the services class to process them. As a result, we construct display
class items like the ones below:

import 'package:flutter/material.dart';

import 'cart_list.dart';

import 'models/shopping_cart.dart';

import 'models/item.dart';

class ShopListWidget extends StatefulWidget {

@override

State<StatefulWidget> createState() {

return _ShopListState();

}

}

class _ShopListState extends State<ShopListWidget> {

ShoppingCart cart = ShoppingCart();

final _scaffoldKey = GlobalKey<ScaffoldState>();

final List<Item> items = Item.dummyItems;

@override

Widget build(BuildContext context) {

final columnCount =

MediaQuery.of(context).orientation == Orientation.portrait ? 2 : 4;

final width = MediaQuery.of(context).size.width / columnCount;

const height = 400;

List<Widget> items = [];

for (var x = 0; x < this.items.length; x++) {

bool isSideLine;

if (columnCount == 2) {

isSideLine = x % 2 == 0;

} else {

isSideLine = x % 4 != 3;

}

final item = this.items[x];

items.add(_ShopListItem(

item: item,

isInCart: cart.isExists(item),

isSideLine: isSideLine,

onTap: (item) {

_scaffoldKey.currentState.hideCurrentSnackBar();

if (cart.isExists(item)) {

cart.remove(item);

_scaffoldKey.currentState.showSnackBar(SnackBar(

content: Text('Item is removed from cart!'),

));

} else if (item.inStock) {

cart.add(item);

_scaffoldKey.currentState.showSnackBar(SnackBar(

content: Text('Item is added to cart!'),

));

} else {

_scaffoldKey.currentState.showSnackBar(SnackBar(

content: Text('Item is out of stock!'),

));

}

this.setState(() {});

},

));

}

return Scaffold(

key: _scaffoldKey,

appBar: AppBar(

title: Text("Apple Store"),

),

body: GridView.count(

childAspectRatio: width / height,

scrollDirection: Axis.vertical,

crossAxisCount: columnCount,

children: items,

),

floatingActionButton: cart.isEmpty

? null

: FloatingActionButton.extended(

onPressed: () {

Navigator.of(context).push(MaterialPageRoute(

builder: (context) => CartListWidget(

cart: this.cart,

)));

},

icon: Icon(Icons.shopping_cart),

label: Text("${cart.numOfItems}"),

));

}

}

class _ShopListItem extends StatelessWidget {

final Item item;

final bool isInCart;

final bool isSideLine;

dynamic onTap;

_ShopListItem({this.item, this.isInCart, this.isSideLine, this.onTap});

@override

Widget build(BuildContext context) {

Border border;

if (isSideLine) {

border = Border(

bottom: BorderSide(color: Colors.grey, width: 0.5),

right: BorderSide(color: Colors.grey, width: 0.5));

} else {

border = Border(bottom: BorderSide(color: Colors.grey, width: 0.5));

}

return InkWell(

onTap: () => this.onTap(item),

child: Container(

decoration: BoxDecoration(border: border),

child: Column(

crossAxisAlignment: CrossAxisAlignment.center,

children: <Widget>[

Padding(

padding: EdgeInsets.only(top: 16),

),

Container(

child: AspectRatio(

aspectRatio: 1,

child: Image.network(item.imageUrl),

),

height: 250,

),

Padding(

padding: EdgeInsets.only(top: 16),

),

Text(item.name,

textAlign: TextAlign.center,

style: Theme.of(context)

.textTheme

.title

.apply(fontSizeFactor: 0.8)),

Padding(

padding: EdgeInsets.only(top: 16),

),

Text(item.formattedPrice,

textAlign: TextAlign.center,

style: Theme.of(context)

.textTheme

.subhead

.apply(fontSizeFactor: 0.8)),

Padding(

padding: EdgeInsets.only(top: 16),

),

Text(this.isInCart ? "In Cart" : item.formattedAvailability,

textAlign: TextAlign.center,

style: Theme.of(context).textTheme.caption.apply(

fontSizeFactor: 0.8,

color:

isInCart ? Colors.blue : item.availabilityColor)),

],

)));

}

}

Create cart_list.dart to display items for checkout:

import 'dart:async';

import 'package:flutter/material.dart';

import 'package:flutter/services.dart';

import 'models/shopping_cart.dart';

import 'models/item.dart';

class CartListWidget extends StatefulWidget {

final ShoppingCart cart;

CartListWidget({this.cart});

@override

State<StatefulWidget> createState() {

return _CartListWidgetState();

}

}

class _CartListWidgetState extends State<CartListWidget> {

static const platform = const
MethodChannel('camellabs.com/payment');

Future<void> _checkout() async {

await platform.invokeMethod('charge', widget.cart.toMap);

}

@override

Widget build(BuildContext context) {

List<Widget> items = [];

widget.cart.items.forEach((c) {

items.add(_CartListItemWidget(

item: c,

));

items.add(Padding(

padding: EdgeInsets.only(top: 8.0),

));

});

return Scaffold(

appBar: AppBar(

title: Text('My Cart'),

actions: <Widget>[

FlatButton(

textColor: Colors.white,

onPressed: () => this._checkout(),

child: Text("Checkout"),

)

],

),

body: Container(

decoration: BoxDecoration(color: Color(0xfff0eff4)),

child: Stack(

children: <Widget>[

ListView(

padding: EdgeInsets.only(bottom: 64),

children: items,

),

Positioned(

bottom: 0,

left: 0,

right: 0,

height: 64,

child: _CartListSummaryFooterWidget(

totalPrice: widget.cart.formattedTotalPrice,

),

)

],

)));

}

}

class _CartListSummaryFooterWidget extends StatelessWidget {

final String totalPrice;

_CartListSummaryFooterWidget({this.totalPrice});

@override

Widget build(BuildContext context) {

return Container(

decoration: BoxDecoration(

color: Color(0XFFF4F4F4),

border: Border(top: BorderSide(color: Colors.grey, width: 0.5))),

child: Padding(

padding: EdgeInsets.all(16.0),

child: Center(

child: Row(

children: <Widget>[

Text(

'Total',

textAlign: TextAlign.left,

style: Theme.of(context).textTheme.title,

),

Expanded(

child: Text(

this.totalPrice,

textAlign: TextAlign.right,

style: Theme.of(context).textTheme.subhead,

))

],

)),

));

}

}

class _CartListItemWidget extends StatelessWidget {

final Item item;

_CartListItemWidget({this.item});

@override

Widget build(BuildContext context) {

return Container(

decoration: BoxDecoration(

color: Colors.white,

border: Border(

top: BorderSide(color: Colors.grey, width: 0.5),

bottom: BorderSide(color: Colors.grey, width: 0.5))),

padding: EdgeInsets.all(16.0),

child: Row(

children: <Widget>[

Container(

height: 64,

child: AspectRatio(

aspectRatio: 1,

child: Image.network(item.imageUrl),

),

),

Padding(

padding: EdgeInsets.only(right: 8.0),

),

Expanded(

child: Text(

item.name,

style:

Theme.of(context).textTheme.title.apply(fontSizeFactor: 0.75),

)),

Padding(

padding: EdgeInsets.only(right: 8.0),

),

Text(

item.formattedPrice,

textAlign: TextAlign.right,

style: Theme.of(context).textTheme.subhead,

)

],

),

);

}

}

4. Create Your Main.dart
The final step is to generate main.dart , which should look like this:

import 'package:flutter/material.dart';

import 'shop_list.dart';

void main() => runApp(MyApp());

class MyApp extends StatelessWidget {

@override

Widget build(BuildContext context) {

return MaterialApp(

title: 'ShopX',

debugShowCheckedModeBanner: false,

theme: ThemeData(

primarySwatch: Colors.blue,

),

home: ShopListWidget(),

);

}

}

At this point, the application can be run to display the appropriate
output, as shown below:

Conclusion
I hope you have found this project useful. For the complete source
code used here, check out the flutter ecommerce GitHub:

github. com/ eccosuprastyo/ flutter/ tree/ master/ flutterecommerse

https://github.com/eccosuprastyo/flutter/tree/master/flutterecommerse

ELEVEN

FlutterFlow Project 1 - Build a Threefold
Pricing Scroll

FlutterFlow is an online low-code builder for native mobile apps. It
has a simple drag-and-drop interface that lets you build a fully
functional app in as little as an hour. You can have stateful elements
and add actions to various parts of your app to create/update/delete
records. You can also load data dynamically.

Developers can quickly handle user authentication, create data types
in the software’s editor, and link widgets to the Firebase database,
thanks to Google’s Firebase integration. Its a low- to no-code
development platform software boasting features like:

Access Control
Mobile Development
Testing Management
Workflow Management
Drag and drop Builder
App Integrations
Integrations Management
Application Templates
Code Assistance
Debugging
Version Control
Web Development
Machine Learning

AI-Assisted Development
Extension Programming

In this chapter, we will build a threefold pricing page scroll using
FlutterFlow.

1. Set Up Your Environment
FlutterFlow integrates with Firebase, both for user authentication and
connecting the UI to a database. Firebase is accessed through a
number of different libraries, one for each Firebase product (e.g.
Realtime Database, Authentication, Analytics, or Cloud Storage).
Please refer to the official FlutterFlow instructions here www.
youtube. com/ watch? v= vVTIafL7tw0 to set up the integration with
Firebase.

2. Create a New Page
The first thing we’re going to do is create a new page on boarding
two, give it a name and a link.

https://www.youtube.com/watch?v=vVTIafL7tw0

The newly created page should look like this:

3. Begin To Reposition Your Widgets To Build
To design a full featured mobile app with FlutterFlow, you can use a
variety of tools. Images, buttons, icons, and lists can be used by app
developers to make the final product more appealing and clear.
There are a variety of layouts to pick from depending on the user’s
requirements.

Now what we’re going to do here is drag over the column. What I’m
doing is using command+F to find a widget in the left Sidebar and
then dragging it over to the middle. First we do the column, then the
row, and then the page view.

Put that page view in the row. We’re going to edit this out a little bit.
W’'re going to get rid of the safe area of the page. That way, we can
span the entirety of the page. We’re going to change the Scroll
action for the page view to vertical.

And then we’re gonna just mix up the indicator position to the top left
with the alignment sliders. You can also just enter the values here—
you don’t have to use the sliders.

Then we’re going to edit the design of the indicators themselves.
Next, we’ll select the page view and set the height to a percentage—
just make it 100% as seen below:

After this, we can get rid of this image, replacing it with what we want
in this page view. So we’re going to drag a container on there, and
then again a column and a row.

This will just align our content in the middle of the column, rather
than at the beginning or the start. So let’s go ahead and grab the
background color we need for this.

Make sure the container is selected. Enter that value there. And then
just press enter.

Note: in FlutterFlow, when you enter a custom value, you may need
to press enter for it to capture that value. (This is a known bug at the
time of writing.)

Now, we double check to make sure our spacing is accurate. We’ll
also add some text here.

After this, we’ll go ahead and copy that row. It’s very easy. Just
select the row itself, and then make sure that you’re in the parent of
that row—which in this case is the column. And then you can paste it
in there.

You can’t paste a row within a row , but you can paste a child within
a parent , which is highly beneficial. We’re going to add a button over
here and give it a custom design. We’ll also set the stylization of this
button to match our design. If necessary, go ahead and give the
design a little more padding vertically.

Right. Now, we’ll copy the text we want to reflect on our final page.
Paste this text right below the subscription amount and month:

We’re going to decrease the size of the text font to make it all look a
little better.

Again, add some padding to the top to lengthen and balance out.
Now that this page is done, we’ll copy the column itself, so that we
can get to a new page view and begin work on the second page.

Paste the column in there, then your text in the centre.

Let’s set the background color to white. We’ll change the color of our
header and use black button design. Make sure your indicator is the
proper color.

And now for the last page on our proposed scroll, we’ll essentially
repeat the processes for the first two designs. We’ll copy that entire
container in page two. You can also hex-code your container unit.

Now select the column and select wrap . Input your text and wrap it
in a container. When you are done, copy the color used. Modify the
size of your text if necessary. For the purpose of the demo, I'm not
going to be too specific on the hex codes.

As a last step, be sure to save your project. When you view your
saved project on FlutterFlow, you should be able to scroll through
these three pages:

Conclusion
FlutterFlow is very easy to learn. You only need to learn the basic
widgets and logic of Flutter. For everything else, like Firebase and
Google Maps integration, there are tutorials from the official

FlutterFlow YouTube channel. For more information on this sample
project, please visit this link:

youtu. be/ QGBKCUrZzJA

https://youtu.be/QGBKCUrZzJA

TWELVE

FlutterFlow Project 2 - Build a Chat App

Messaging apps are surging in popularity. These past few years
have seen an influx of chat apps like WhatsApp. Today, more people
seem to prefer chat-based applications, largely because these apps
are so convenient. They allow for real-time interaction while
simultaneously adding a personal touch to the experience. In this
chapter, we’ll explore how to add chats to your projects with
FlutterFlow.

Prerequisite
Before you get started, make sure that you have Firebase already
configured for your projects.

This means that you have to have your config files already added.
You must already have set up authentication, so that you have your
login page, homepage, and, of course, Firestore.

Also, you must have already defined your user’s records and set up
the create user record .

If your environment is not set up in this way, please refer to the
information in the previous chapter to do so.

Now, as stated, our goal here is to add chats to our project using
FlutterFlow, and we will start by creating a new page titled chat page
.

What this will do is automatically add the chat collection and your
chat messages to your Firestore project.

As you can see, we’ve added chats and chat messages. You don’t
need to change anything here. If you so choose, you can edit the
colors to your liking. We can also go back and create a chat preview
page, just to show all of our active chats.

And again, there is no need to alter or modify this too much. This is
merely a chat preview, and whether or not you choose to customize
it, it shows all of your chats, most recent first. By the lower right-hand
corner of your screen, you’ll find the option to filter the chats you’re
in, so that they pop up in a decreasing time order.

And that’s really all there is to do here.

Now, the only other step is setting up the Firestore. Go to the
Firestore tab, click on Settings, and you’ll see the Firestore rules
listed out.

FlutterFlow has automatically created these security rules for users,
and this works to make sure that only you and the people inside your
chats can see the chats you’re in. This is obviously important for
security, so what we’ll do here is copy these rules in our Firestore
project and paste them here.

Once this is done, go ahead and click Publish . Now, one more
important thing we need to do here is go to indexes.

Indexes allow you to order and filter your data. For instance, you’ll
want the ability to filter chats by participant and sort by date. Same
with chat messages: you need to make sure that the chat messages
on your screen are the ones you are in, and also that the list is
ordered so that the most recent chats are displayed at the bottom of
the page. For this, we need to create two indexes.

Let’s first create an index for chats, the first in our chats collection.
Here ,we need to add users—that’s an array. So, the chats collection
has a users field, which is a list of the users that are in the chats—
and you need to make sure that you are in the chat. That’s why this
field in the index is necessary.

The other index field to work on is last message time , and we want
to set it to descending order. Create this index not for a collection,
but for a group.

Now we’ll do the same for chat messages. For this collection—chat
messages—we’ll add the chat field, because we want to make sure
that our chat messages are parts of this particular chat and not some
other chat. Again, we want to order by the most recent chat
messages, so we’ll order by timestamp, descending.

Here, select collection → create index , and we're done. We have
a chat in our app, and we're ready to go.

Conclusion
FlutterFlow is a relatively new app builder, but it is based on Flutter
logic and works with the Flutter widgets. FlutterFlow uses certain
packages to leverage their already built-in integrations, such as
Google Maps. Also, FlutterFlow uses packages like url_launcher ,
page_transition or intl . By dragging and dropping, you can arrange
widgets very quickly. To learn more about FlutterFlow, visit:

flutterflow.io .

https://flutterflow.io/

THIRTEEN

Flutter and HTTP

Most Flutter projects entail HTTP connectivity between your app
and a server-side API. The majority of the time, these server APIs
follow the REST design rules, and data is sent in JSON format. The
goal of this chapter is to teach you about HTTP before you start
typing.

Asynchronous Communication
When your app uses HTTP to communicate with a remote server, it
does so asynchronously. After sending a request to the server, the
program does not abruptly halt. The Dart language, as you learned
in Chapter Three, fully supports asynchronous programming,
including Futures.

Futures are used by the Flutter HTTP package (which we shall
explore shortly) to allow developers to communicate asynchronously
over HTTP. We don’t stop doing things in the app when we use
HTTP to connect with the server; instead, we process the success or
error answer as it comes back to us.

HTTP

The Hypertext Transfer Protocol (HTTP) is a protocol that allows
clients and servers to communicate with each other. HTTP is a
request-response protocol that communicates between a client and
a server. A protocol explains how machines exchange messages
with one another. The format of these communications is defined by
a protocol.

Tools
Once you've mastered Flutter, you'll find yourself spending a lot of
time creating code that interacts with servers through HTTP. I
suggest you look into these tools ahead of time, because they will
make your life easier. These are some of the tools available:

Web Browser

Obviously, you already own one of them. Open your browser, and go
to a website. Now, utilize the hamburger menu to access the
developer tools and observe the HTTP protocol in action. The
network traffic inspector can be accessed by selecting the “network”
option. The network traffic inspector may be seen on the right side of
the image, with one request selected and inspected in greater detail.

Postman

Postman is an application programming interface (API) development
tool that aids in the creation, testing, and modification of APIs. This
utility contains almost all of the features that a developer would
require. Before you code HTTP queries to a server in Flutter, you
may use this tool to test them. You can see what's going on by
looking at the raw data. Check it out here:

www.getpostman.com

https://www.getpostman.com/

JSON Formatter

The data format you’ll be working with is in JSON format. To make
the JSON more readable, you might want to look for a decent online
JSON formatter. Check it out here:

jsonformatter.curiousconcept.com

Methods
HTTP methods have existed for quite some time. POST , GET , PUT
, PATCH , and DELETE are the most often used HTTP methods.
The method specifies what the app wants the server to do and what
the request’s goal is.

The methods get and post are the most regularly utilized. To request
data from the server, use the get method. The post method is used
to send, store, or update data to a server. To update data on the
server, use the put method, and to delete data from the server, use
the delete method.

URL
This is the destination address for the request, on a specific server
and a certain path.

Query Parameters
Query parameters in HTTP allow you to pass information to the
server in the URL. The main distinction is that query parameters
apply to the entire request, whereas matrix parameters apply to a
specific path element.

https://jsonformatter.curiousconcept.com/

Matrix Parameters
Using matrix parameters, HTTP allows you to transmit information to
the server in the URL. Matrix parameters have a similar structure to
query strings, but they follow a distinct pattern. They also behave
differently since they can be cached (due to the lack of a question
mark).

Path Parameters
HTTP allows you to transmit information to the server using path
parameters in the URL. Path parameters are used to identify a
specific resource or resources, unlike query parameters, which are
used to sort/filter resources. Because path parameters are part of
the URL, you can’t leave them blank.

Status
This is a part of the answer. It shows if the request was processed
successfully or not.

Header
HTTP headers allow the client and server to provide additional data
in the request or response. A request header is made up of key
value pairs: a case-insensitive key, a colon (:), and then the value
(without line breaks).

Body

After the header, the HTTP body allows the client and server to send
additional information with the request or response.

Request
HTTP bodies are not always required in the request, because a body
of data is not always necessary. A body is usually not required for
GET and DELETE HTTP requests. The information to be created or
edited is sent via POST , PUT , and PATCH HTTP requests.

Flutter and HTTP
We need to develop code that interfaces with APIs on servers using
the HTTP protocol to convert data from Flutter to JSON and back.
We’ll utilize the Flutter HTTP Package to accomplish this. We’ll have
to add a dependency for this, because the Flutter HTTP is not a core
package. Also, remember to execute a flutter packages get . More
information is available here:

pub. dartlang. org/ packages/http .

Error Handling

The Flutter HTTP package allows us to communicate with APIs
asynchronously through HTTP, which complicates error handling:

In the event that an error occurs during the request, you
must add an error handler.
In the event that the future stops with an error, you must
include an error handler.
Also, if an error occurs, you will have to check the HTTP
code of the server’s response to see if anything went wrong
on their end.

https://pub.dartlang.org/packages/http

Illustration
Let’s create a sample Flutter app that uses the http package to
perform HTTP requests to display placeholder information.

Prerequisites

This sample app presumes that:

You have already downloaded and installed Flutter from
flutter. dev/ docs/ get- started/ install
You have downloaded and installed either Android Studio
from developer. android. com/ studio or Visual Studio Code
from code.visualstudio.com

It is recommended that you also install plugins for your code editor:

Flutter and Dart plugins for Android Studio. Get these from
plugins. jetbrains. com/ plugin/ 9212- flutter and plugins.
jetbrains. com/ plugin/ 6351-dart .
Flutter extension for your Visual Studio Code. Get this from
marketplace. visualstudio. com/ items? itemName= Dart-
Code. flutter .

1. Setting Up the Project

The first step is to set up the project. You’ll be building a Flutter app
to follow along with the setup. After you’ve set up your Flutter
environment, use the following commands to build a new application:

https://flutter.dev/docs/get-started/install
https://developer.android.com/studio
https://code.visualstudio.com/
https://plugins.jetbrains.com/plugin/9212-flutter
https://plugins.jetbrains.com/plugin/6351-dart
https://marketplace.visualstudio.com/items?itemName=Dart-Code.flutter

flutter create flutter_http_example

Go to the following location to find the new project directory:

cd flutter_http_example

Through Flutter Create, you can make a demo app that shows how
many times a button has been clicked. In your code editor, open
pubspec.yaml and add the following plugin:

dependencies:

flutter:

sdk: flutter

http: ^0.12.0+2

This is an official Flutter plugin published by dart.dev here:

pub. dev/ publishers/ dart. dev/ packages

https://pub.dev/publishers/dart.dev/packages

It has a 100% health score, and you can trust the reliability of this
plugin.

2. Handling GET Requests

The next step is to create a class that will allow you to interact with
the API. Create a http_service.dart file in the lib directory with your
code editor. You’ll create a new HttpService class and add the
getPosts function here:

lib/http_service.dart

import 'dart:convert';

import 'package:http/http.dart';

import 'post_model.dart';

class HttpService {

final String postsURL =

"https://jsonplaceholder.typicode.com/posts";

Future<List<Post>> getPosts() async {

Response res = await get(postsURL);

if (res.statusCode == 200) {

List<dynamic> body = jsonDecode(res.body);

List<Post> posts = body

.map(

(dynamic item) => Post.fromJson(item),

)

.toList();

return posts;

} else {

throw "Unable to retrieve posts.";

}

}

}

You’ll be connecting to JSON Placeholder in this example. The get
method of the http package is used on the postsURL string in this
code. If the request was successful, this code will use
Post.fromJson to return a List<Post> . Otherwise, an error
message will be displayed.

Then, under the lib directory, create a post_model.dart file with
your code editor. You will create a new Post class here:

import 'package:flutter/foundation.dart';
class Post {
final int userId;
final int id;
final String title;
final String body;
Post({
@required this.userId,
@required this.id,
@required this.title,
@required this.body,
});
factory Post.fromJson(Map<String, dynamic> json) {
return Post(
userId: json['userId'] as int,
id: json['id'] as int,
title: json['title'] as String,
body: json['body'] as String,
);
}
}

This code will return a new Post with the fromJson function based
on a JSON Map in order to serialize the response from JSON
Placeholder. JSON Placeholder typically returns a Post with a
userId, id, title, and body.

3. Displaying Posts

After that, in the lib directory, create a posts.dart file with your code
editor. Here, you’ll make a PostsPage class that will show the Posts
returned by the HTTP call to JSON Placeholder:

lib/posts.dart

import 'package:flutter/material.dart';

import 'http_service.dart';

import 'post_model.dart';

class PostsPage extends StatelessWidget {

final HttpService httpService = HttpService();

@override

Widget build(BuildContext context) {

return Scaffold(

appBar: AppBar(

title: Text("Posts"),

),

body: FutureBuilder(

future: httpService.getPosts(),

builder: (BuildContext context, AsyncSnapshot<List<Post>>
snapshot) {

if (snapshot.hasData) {

List<Post> posts = snapshot.data;

return ListView(

children: posts

.map(

(Post post) => ListTile(

title: Text(post.title),

subtitle: Text("${post.userId}"),

),

)

.toList(),

);

} else {

return Center(child: CircularProgressIndicator());

}

},

),

);

}

}

The FutureBuilder widget is used to interact with the getPosts()
function in this code. This enables the code to detect when the
List<Post> is ready and take appropriate action. The
CircularProgressIndicator is displayed if snapshot.hasData is
false. Otherwise, the post information is shown in a ListTile . You’ll
need to replace the code in main.dart in order to see what you’ve
got so far. Open your code editor and change lib/main.dar t to utilize
PostsPage :

import 'package:flutter/material.dart';

import 'posts.dart';

void main() {

runApp(MyApp());

}

class MyApp extends StatelessWidget {

@override

Widget build(BuildContext context) {

return MaterialApp(

title: 'HTTP',

debugShowCheckedModeBanner: false,

theme: ThemeData(

primarySwatch: Colors.blue,

visualDensity: VisualDensity.adaptivePlatformDensity,

),

home: PostsPage(),

);

}

}

Compile and run your code in an emulator. JSON Placeholder
should return a list of post titles and user ids to you. When a user
clicks on a post title, the next step is to construct a comprehensive
page with more information about the post.

4. Displaying PostDetail

Your app should redirect the user to a PostDetail page if the user
taps on the post. Create a post_detail.dart file in the lib directory
with your code editor. Here, you'll make a PostDetail class that will
display a single Post:

lib/post_detail.dart

import 'package:flutter/material.dart';

import 'post_model.dart';

class PostDetail extends StatelessWidget {

final Post post;

PostDetail({@required this.post});

@override

Widget build(BuildContext context) {

return Scaffold(

appBar: AppBar(

title: Text(post.title),

),

body: SingleChildScrollView(

child: Padding(

padding: const EdgeInsets.all(12.0),

child: Column(

children: <Widget>[

Card(

child: Column(

crossAxisAlignment: CrossAxisAlignment.center,

children: <Widget>[

ListTile(

title: Text("Title"),

subtitle: Text(post.title),

),

ListTile(

title: Text("ID"),

subtitle: Text("${post.id}"),

),

ListTile(

title: Text("Body"),

subtitle: Text(post.body),

),

ListTile(

title: Text("User ID"),

subtitle: Text("${post.userId}"),

),

],

),

),

],

),

),

)

);

}

}

The title, id, body, and userId will all be displayed with this code. To
see what you’ve got so far, you’ll need to update posts.dart to
include post_detail.dart :

lib/posts.dart

import 'package:flutter/material.dart';

import 'http_service.dart';

import 'post_detail.dart';

import 'post_model.dart';

class PostsPage extends StatelessWidget {

final HttpService httpService = HttpService();

@override

Widget build(BuildContext context) {

return Scaffold(

appBar: AppBar(

title: Text("Posts"),

),

body: FutureBuilder(

future: httpService.getPosts(),

builder: (BuildContext context, AsyncSnapshot<List<Post>>
snapshot) {

if (snapshot.hasData) {

List<Post> posts = snapshot.data;

return ListView(

children: posts

.map(

(Post post) => ListTile(

title: Text(post.title),

subtitle: Text("${post.userId}"),

onTap: () => Navigator.of(context).push(

MaterialPageRoute(

builder: (context) => PostDetail(

post: post,

),

),

),

),

)

.toList(),

);

} else {

return Center(child: CircularProgressIndicator());

}

},

),

);

}

}

Compile and test your code in an emulator. The final stage will be to
include the option to delete a post.

5. Handling DELETE Requests

The DELETE method is an excellent example of an HTTP request.
Create a deletePost(int id) method in http_service.dart in your
code editor:

lib/http_service.dart

import 'dart:convert';

import 'package:http/http.dart';

import 'post_model.dart';

class HttpService {

final String postsURL = "https://jsonplaceholder.typicode.com/posts";

// …

Future<void> deletePost(int id) async {

Response res = await delete("$postsURL/$id");

if (res.statusCode == 200) {

print("DELETED");

} else {

throw "Unable to delete post.";

}

}

}

In your code editor, go back to post_detail.dart and add an
IconButton to the actions array within the AppBar. The
corresponding post should be deleted when the icon is pressed:

import 'package:flutter/material.dart';

import 'http_service.dart';

import 'post_model.dart';

class PostDetail extends StatelessWidget {

final HttpService httpService = HttpService();

final Post post;

PostDetail({@required this.post});

@override

Widget build(BuildContext context) {

return Scaffold(

appBar: AppBar(

title: Text(post.title),

actions: <Widget>[

IconButton(

icon: Icon(Icons.delete),

onPressed: () async {

await httpService.deletePost(post.id);

Navigator.of(context).pop();

},

)

],

),

// ...

);

}

}

Compile and test your code in an emulator. The Delete icon button
appears in the AppBar when you visit a post detail page. By pressing
the button, a message will be printed in the console.

Output

flutter: DELETED

This is a request to delete items. This post will not be erased,
however, due to the constraints of JSON Placeholder and this
example application.

Conclusion
You learned how to use the Flutter http package in this chapter. You
may GET a list of posts and DELETE a single post using this
method. Post, place, patch, and other similar procedures are also
accessible. For more information, check out the official
documentation here:

pub. dev/ documentation/ http/ latest/

https://pub.dev/documentation/http/latest/

FOURTEEN

Debugging

The goal of this chapter is to assist you with debugging, diagnosing,
and profiling your Flutter projects. Flutter provides us with fantastic
tools to make debugging easier, supplying uswith any information we
might need. This is a vast topic, and all this chapter can do is “dip its
toe in the water.” I’ll show you how to use Debugging In Flutter, as
well as define its properties and use them in your Flutter apps.

Flutter Debugging
Flutter provides a variety of devices and capabilities to aid with the
debugging of applications. The equipment and facilities listed below
are on display.

DevTools: The go-to tool for debugging apps may be
DevTools. It’s a browser-based set of performance and
profiling tools.
Logging: Logging view widget Inspector in DevTools, as well
as indirectly from Android Studio and IntelliJ IDEA. The
widget tree visual representation can be checked using the
inspector.
Debug Flags: Debug Flags gives us a choice of debug flags
and functions to help us debug our program at different

moments. You must compile in debug mode, though, in order
to use these functionalities.

Code Implement
The debug flag and some of its functions will be discussed here.
These include debugPaintSizeEnabled ,
debugPaintBaselineEnabled , debugPaintLayerBorderEnabled
and debugRepaintRainbowEnabled .

To begin, we need to first import rendering.dart from Flutter.

import 'package:flutter/rendering.dart';

debugPaintSizeEnabled

This screen makes use of the type’s paint size embed feature. It
generates a render box around the screen and highlights it with
several colors and a thick line on the side. Let’s demonstrate this
with a simple example:

debugPaintSizeEnabled = true;

When the app is debugged, we should be able to see the screen
output, as shown in the snapshot below.

debugPaintBaselineEnabled

This flag paints a line on each baseline in the screen. Now add
debugPaintBaselineEnabled= true in the main function to illustrate
this further:

debugPaintBaselinesEnabled = true;

When the app is debugged through this means, we should be able to
see the screen output, as shown in the image below.

debugPaintLayerBorderEnabled

This generates a paint line and turns each layer in the screen into a
box with a boundary. When you add
debugPaintLayerBordersEnabled , restart the app.

debugPaintLayerBordersEnabled = true;

When the app is debugged, we should be able to see the screen
output, as shown in the snapshot below.

debugRepaintRainbowEnabled

When repeating layers in checked mode after running in debug
mode on the screen, this overlays the revolving set of colors.

debugRepaintRainbowEnabled = true;

When the app is debugged, we should be able to see the screen
output, as shown in the snapshot below.

import 'package:flutter/material.dart';

import 'package:flutter_debugging_demo/shared/custom_button.dart';

import
'package:flutter_debugging_demo/shared/custom_text_field.dart';

import 'package:flutter_debugging_demo/themes/appthemes.dart';

import 'package:flutter_debugging_demo/themes/device_size.dart';

import 'package:flutter/rendering.dart';

class DebuggingDemo extends StatefulWidget {

@override

_DebuggingDemoState createState() =>

_DebuggingDemoState();

}

class _DebuggingDemoState extends State<DebuggingDemo> {

@override

Widget build(BuildContext context) {

debugPaintSizeEnabled = true;

debugPaintBaselinesEnabled = false;

debugPaintLayerBordersEnabled = false;

debugRepaintRainbowEnabled = false;

debugRepaintTextRainbowEnabled = false;

debugCheckElevationsEnabled = false;

debugDisableClipLayers = false;

debugDisablePhysicalShapeLayers = false;

debugDisableOpacityLayers = false;

return Scaffold(

appBar: AppBar(

title: Text('Debugging Demo'),

),

body: Container(

height: DeviceSize.height(context),

width: DeviceSize.width(context),

child: Column(

children: [

Container(

margin: EdgeInsets.only(top: 100),

//alignment:Alignment.bottomCenter,

child: ClipOval(

child: CircleAvatar(

backgroundColor: Colors.transparent,

maxRadius: 50,

child: Image.asset(

'assets/images/login.jpeg',

fit: BoxFit.cover,

width: DeviceSize.width(context),

),

),

),

),

Container(

padding: EdgeInsets.only(top: 40, left: 25, right: 25),

child: CustomTextField(

hintText: 'User Name',

type: TextInputType.text,

obscureText: false,

labelText: '',

),

),

Container(

padding: EdgeInsets.only(top: 20, left: 25, right: 25),

child: CustomTextField(

hintText: 'Password',

type: TextInputType.text,

obscureText: true,

labelText: '',

),

),

Container(

margin: EdgeInsets.only(top: 20),

child: CustomButton(

callbackTertiary: () {

debugDumpApp();

},

color: Colors.blue,

mainButtonText: 'Login',

),

),

Container(

padding: EdgeInsets.only(top: 20, left: 25, right: 25),

child: Row(

mainAxisAlignment: MainAxisAlignment.spaceBetween,

children: [

Text(

'Forgot Password?',

style: TextStyle(fontSize: 13, fontWeight: FontWeight.w700),

),

Text(

'Register',

style: TextStyle(

color: Colors.blue,

fontSize: 13,

fontWeight: FontWeight.w700),

),

],

),

),

],

),

),

);

}

void debugDumpApp() {

assert(WidgetsBinding.instance != null);

String mode = 'RELEASE MODE';

assert(() {

mode = 'CHECKED MODE';

return true;

}());

debugPrint('${WidgetsBinding.instance.runtimeType} - $mode');

if (WidgetsBinding.instance.renderViewElement != null) {

debugPrint(WidgetsBinding.instance.renderViewElement.toStringDee
p());

} else {

debugPrint('<no tree currently mounted>');

}

}

}

Debugging Tools
There are a wide variety of tools and features to help debug Flutter
applications.

The Dart Analyzer

Flutter Analyze helps you test your code before you run it. This tool
is a wrapper for the dartanalyzer tool, which really analyzes your
code and assists you in finding potential errors. The Dart analyzer
makes extensive use of type annotations, which you can provide in
your code to aid in the detection of errors. You should use them
everywhere, because it is the quickest and easiest method to trace
down errors—but avoid var, untyped arguments, untyped list literals,
and so on.

Dart Observatory (Statement-level Single-stepping Debugger
and Profiler)

If you use Flutter Run to start your app, you may open the web page
at the observatory URL printed to the console while it’s running.
Profiling, analyzing the heap, and other tasks are also supported by
the Dart Observatory. The Observatory’s documentation has more
information:

dart-lang.github.io/observatory

If you’re profiling your app with Observatory, make sure to run it in
profile mode by supplying —profile to the flutter run command. You
may also use the built-in debugger in a Flutter-enabled IDE/editor to
debug your application.

https://dart-lang.github.io/observatory/

Debugger() Statement

You can add temporary code to detect a condition and start the
debugger when you’re troubleshooting to try and reproduce it. Flutter
allows you to use your IDE’s debugger directly from your code using
this sentence. This is equivalent to the debugger statement for
JavaScript.

Keep in mind to import dart:developer at the beginning. The
debugger() instruction can be used to introduce programmatic
breakpoints when using the Dart Observatory (or another Dart
debugger integrated into a Flutter capable IDE/editor). To use it, add
import 'dart:developer '; to the start of your file. When you use the
debugger() command, you can give an optional when parameter to
only break when a certain condition is true, like in:

void someFunction(double offset) {

debugger(when: offset > 30.0);

// ...

}

Print and debugPrint with Flutter Logs

The Dart print() function prints to the system console, which you can
inspect with the Flutter logs command (which is basically a wrapper
around adb logcat). When you produce a large amount of data at
once, Android may discard some log lines. To avoid this, utilize
Flutter’s foundation library’s debugPrint() method. This is a wrapper
for print that compresses the output to a level that avoids the kernel
of Android dropping it.

Many of the Flutter framework’s classes have toString
implementations, and these are handy. They usually emit a single
line with the object’s runtimeType , which is commonly in the form
ClassName . ToStringDeep is a method in some tree classes that
returns a multiline description of the complete subtree from that
point. Some classes include a toStringShort method that returns
simply the type or a very brief (one or two word) description of the
object, which is useful if the toString implementation is very verbose.

Debug mode assertions
Using Flutter's debug mode while development is highly
recommended. If you use flutter run or the bug icon in Android
Studio, this is the default. The command line argument —enable-
asserts is used by some utilities to support assert statements.

The Flutter framework examines the argument to each assert
statement encountered during execution in this mode, throwing an
exception if the result is false and if Dart assert statements are
enabled. This allows developers to enable or disable invariant
testing, and the performance cost associated with it is only paid
during debugging sessions.

When an invariant is broken, it is sent to the console along with
additional context information to aid in the investigation of the
problem. To utilize release mode instead of debug mode, run your
app with flutter run —release . This would also turn the
Observatory debugger off.

An intermediate mode, known as “profile mode,” is also available,
which disables all debugging aids except the Observatory and uses
—profile instead of —release .

For more information, see Flutter’s modes here:

lutter.axuer.com/docs/testing/build-modes

https://flutter.axuer.com/docs/testing/build-modes

Conclusion
I’ve explained debugging in Flutter in this chapter, providing
examples that you can modify and experiment with on your own.
Even though this brief introduction was taken from Flutter's
Debugging demo, please try it out on your own Flutter project
applications. There is only so much we can cover in this chapter. I
encourage you check out more information here:

medium. com/ flutterdevs

https://medium.com/flutterdevs

FIFTEEN

Other Considerations

This chapter serves “hook” for anything else you should think about
when creating your software with Flutter. This is important, because
aside from the creation of your project and its development into an
app, there are some final points to double check before you publish
your app.

HTTP Communication
While we have discussed Flutter and the HTTP package previously,
it is important that before we go into further detail on Flutter speed,
we reiterate that most Flutter apps will interact with other computers.
Considering that network connectivity is generally substantially
slower than the Flutter user interface, examining how your app
connects with other computers is a smart place to start and can
produce considerable benefits.

Data Considerations
It’s critical to understand what data each server sends you, because
you might not need them all. Do you require all of the data
elements? Is there any way to reduce the size of the data? Is it

possible to save some of the data in a cache and only refresh the
cache once in a while? Is it possible to submit many requests to the
server and have them all execute asynchronously at the same time?
The more answers you have here, the smoother your work will be.

Avoid Rebuilding All the Widgets Repetitively

We learn to rebuild our stateful widgets using setState , which is a
common mistake we make when we first start using Flutter. It is not
good practice to rebuild the entire widget; instead, we should rebuild
only the parts that need to be updated.

Many people are aware that this may be accomplished using a state
management package such as flutter bloc, mobx, provider, and so
on. Few people realize, however, that it can be done without any
extra packages, using classes that the Flutter framework already
includes, such as ValueNofifier and changeNofifier .

Isolates

Dart executes in a single thread. This sounds fantastic, until you
realize you’ll have to do a lot of heavy processing. When you
perform all your processes on a single thread, the intensive
processing prevents your user interface from updating and makes it
sluggish.

With Isolates , you can execute massive processing while keeping
the user interface current and responsive. Dart’s version of a thread
is an isolate. Isolates, unlike threads, do not share memory with
other processes and communicate with each other via messages
and ports. You can send a message from the isolation to the main
thread to update the UI (for example, the progress bar), and it will
update immediately.

Use Const Widgets Where Possible

For constants that can be initialized at compile time, it’s best to use
the keyword const . Let’s not forget to use const for our widgets as
much as is feasible; this allows us to capture and reuse widgets,
avoiding costly rebuilds.

Use the const keyword to avoid possible instantiation/rebuilds when
utilizing stateless widgets. Constants also save memory, since, no
matter how many times the const expression(s) are evaluated, a
single const object will be constructed and reused for each given
const value.

Use itemExtent in ListView for Long Lists

The use of itemExtent is quite significant when you have a really
long list and want to make a sharp jump with the scroll. In a long list,
if we ignore the itemExtent in ListView and let the children define
the size of the list, the jump would be quite slow at 10 seconds. This
can make our work more challenging—it even disables the user
interface.

To avoid this, we can use the itemExtent property, which allows the
scrolling machinery to save time by taking advantage of the
foreknowledge of the children’s extent.

Avoid Rebuilding Unnecessary Widgets inside AnimatedBuilder

Adding animation to our widgets is a common request. We usually
add a listener to our AnimationController and call setState from
there. However, this isn't always a good idea.

Instead, we’ll utilize the AnimatedBuilder widget to only rebuild the
widget we wish to animate. It is recreating your widget while rotating.
If you have a lot of print statements, you can use the
AnimatedBuilder 's child attribute, which allows you to cache
widgets and reuse them in your animation. We do this because the

widget will not change; the only thing it will do is rotate, which the
Transform widget can handle.

Use Finals Whenever Possible

This improves not only efficiency, but readability, as well, because
you know the value of that instance variable is unchangeable. If you
have instance variables that are only set in the constructor, for
example, you can mark them as final.

Conclusion
Even though Flutter is powerful enough to run our apps without
problems, it is always good to follow best practices and optimize
your app as much as possible. You can check out these links for
more helpful information:

https:// api. flutter. dev/ flutter/ widgets/ StatefulWidget- class.
html#performance- considerations

https:// flutter. dev/ docs/ perf/ rendering/ best- practices

https://api.flutter.dev/flutter/widgets/StatefulWidget-class.html#performance-considerations
https://flutter.dev/docs/perf/rendering/best-practices

SIXTEEN

Publishing Your App

The process of making your mobile applications available to users is
known as publishing . When you publish a mobile app, you have
two major steps to complete:

You finish the application and get it ready for release. You
create a release version of your software during the
preparation stage, which people may download and install
on their devices.
You release the app to users. You market, sell, and distribute
the release version of your application to users during the
release process.

I’ll give you an overview of the steps you should take as you prepare
to publish your app here. This chapter’s goal is to serve as a “catch-
all” for anything connected to publishing your Flutter app.

How to Release Your Flutter App for iOS
Prerequisites

Check to see if you’ve followed Apple’s requirements for
publishing an app on the App Store.

Prepare the icons and launch screens for your app.
Have a developer account with Apple.

Get Ready to Build

You must first set up an App Store Connect account before you can
build and release your app on the App Store. To do this, you should
first register a unique bundle ID for your app. This can be done when
you login to your Apple Developer account, following the instructions
below:

Navigate to the App IDs page.
To create a new Bundle ID, click + .
Fill in the required fields: App Name and Explicit App ID.
Select the services that your app requires and click
Continue .
To finish, review the information and click Register .

Now that we have a unique bundle ID, it's time to create a Project
Store Connect account for your app. Connect to the App Store by
logging in.

Choose My Apps .
Select New App after clicking + .
After filling in your app’s details and ensuring that iOS is
selected, click Create .
Select App Information from the sidebar.
Select the Bundle ID that you registered above in the
General Information section.

Adjust Xcode Project Settings for Release

You’ve completed Apple’s setup, and now you’ll tweak your Xcode
project’s settings to get your app ready for release. Start Xcode and
see what you can come up with.

Open the Runner.xcworkspace file in the iOS folder of your
project.
Select the Runner project from the Xcode project navigator.
Then, in the main view sidebar, select the Runner target.
Click on the General tab.
Fill in the details in the Identity area, making sure the
Bundle Identifier matches the one registered on App Store
Connect.
Make sure that Automatically manage signing is checked
in the Signing section, and then select your team.
Complete the remaining fields as needed.
After that, you’ll change the icon for your app by selecting
Assets.xcassets in the Runner folder from Xcode’s project
navigator.

Build and Upload Your App

Now, all of your settings have been modified for release, and a
placeholder has been created on App Store Connect, allowing you to
build and release.

Run flutter build ios from the command line.
Return to Xcode and restart Runner.xcworkspace .
Choose Product → Scheme → Runner .
Also click on Product → Destination → Generic iOS
Device .
To create a build archive, go to Product → Archive .
Select your iOS app from the sidebar in the Xcode Organizer
window, then select the build archive you just created.

To build, click the Validate button.
Click Upload to App Store after the archive has been
successfully authenticated.

Return to App Store Connect and check the Activities tab to see how
your build is doing. When it’s all set to release:

Fill out the needed information under Pricing and
Availability .
Select the Status from the sidebar.
Select Prepare for Submission and fill out all of the fields
that are required.
Finally, click on Submit for Review .

Your app will now be successfully posted to the App Store. Apple will
review or evaluate your app before it is released, but they will keep
you informed about its progress at all times.

How to Release Your Flutter App for Android
Prerequisites

Make sure you have an Android app ready to go.
Create a launcher icon and gather all of your app’s assets.

Prepare for Release

A digital signature is required before your Flutter app can be
published on Google Play. Create a keystore if you don't already
have one on Mac with the following command:

keytool -genkey -v -keystore ~/key.jks -keyalg RSA -keysize 2048 -
validity 10000 -alias key

Use the following command on Windows:

keytool -genkey -v -keystore c:/Users/USER_NAME/key.jks -storetype
JKS -keyalg RSA -keysize 2048 -validity 10000 -alias key

Add a file called /android/key.properties that references your
keystore. It should look like this:

storePassword= keyPassword= keyAlias=key

storeFile=/key.jks>

Configure Signing in Gradle

Your Gradle file is located at /android/app/build.gradle . Begin
editing by going through the following steps.

Replace . . .

android {

. . . with the keystore information that we just created, as seen
below:

def keystoreProperties = new Properties()

def keystorePropertiesFile = rootProject.file('key.properties')

if (keystorePropertiesFile.exists()) {

keystoreProperties.load(new FileInputStream(keystorePropertiesFile))

}

android {

Then, also replace the following. . .

content_copy

buildTypes {

release {

// TODO: Add your own signing config for the release build.

// Signing with the debug keys for now,

// so `flutter run --release` works.

signingConfig signingConfigs.debug

}

}

. . . with the signing configuration info:

content_copy

signingConfigs {

release {

keyAlias keystoreProperties['keyAlias']

keyPassword keystoreProperties['keyPassword']

storeFile keystoreProperties['storeFile'] ?
file(keystoreProperties['storeFile']) : null

storePassword keystoreProperties['storePassword']

}

}

buildTypes {

release {

signingConfig signingConfigs.release

}

}

After that, navigate to the defaultConfig block and:

Create a final applicationId that is unique.
Give your app a versionName and a versionCode .
Set the minimum SDK API level required for the app to run.

Your app’s Gradle file is now configured, and your release builds will
be signed automatically. Examine the app manifest closely, so as to
ensure that everything is in working order. In addition, the file
AndroidManifest.xml can be found in the /android/app/src/main
directory. Before you start building, open this and go over the values
and permissions you’ll need.

Build and Release the App

Now you’ll create the APK for your program, which will be posted to
the Google Play Store. To get started, go to your command prompt
and type the following commands:

Enter cd
Then run flutter build apk

Exempting any errors, an APK will be accessible at this point in
/build/app/outputs/apk/release/app.apk . Your app is now ready to
be published on the Google Play store. For further reading, visit:

https:// flutter. dev/ docs/ deployment/ android

https:// flutter. dev/ docs/ deployment/ios

https://flutter.dev/docs/deployment/android
https://flutter.dev/docs/deployment/ios

Final Words

Flutter is exceptional for very many reasons. If you are new to mobile
development, Flutter will give you a fast, fun and modern way to
deliver native apps. If you are a more experienced mobile developer,
you can add Flutter to your existing workflow and tools to build new
expressive UIs.

We’ll conclude this journey with a summary of all that we looked at in
this book:

Basic Terminologies: An understanding of these basic
concepts is necessary for you before you delve into the
world of Flutter.
Introduction To Dart: Dart is an object-oriented
programming language designed for client development,
indispensable to Flutter applications. We looked at some
advanced Dart Samples to illustrate how the language
functions.
Introduction To Flutter: We looked at the core components
of Flutter, Google's open-source SDK for creating apps for
Android and iOS using a single codebase. We reviewed all
the ways it’s simpler than React Native and went further to
discuss its latest version: Flutter 2.2. We also worked on five
different flutter projects in this book. and I hope you grasped
enough to attempt to develop some of yours.

Project Using FlutterFlow: We reviewed two sample
projects with FlutterFlow, and while there are many more, the
idea here was to provide you with a foundational
understanding of how this software works.
Flutter and HTTP: Flutter provides an http package that
supports making HTTP requests. HTTP has tools like
Response, Request, Postman and JSON Formatter
alongside its methods such as POST, GET, or DELETE—all
to ensure a smoother communication. The Flutter HTTP
package uses Futures to enable developers to communicate
through HTTP asynchronously, as we demonstrated this in
the book.
Debugging: Flutter provides multiple debugging tools, such
as timeline inspector, memory and performance inspector,
and more. These tools ease up the debugging process for a
developer. We also implemented a demo of Debugging In
Flutter, describing its properties and how to use them in your
Flutter applications.
Publishing Your App: We rounded up by discussing other
final considerations and how to deploy your Flutter app on
the App Store and Google Play.

Thank you for coming along on this journey. The author of this book
wishes you a long, happy, and purposeful life.

References

Without the materials and sources listed below, I would not have
been able to complete even 10% of this book. For this reason, I am
grateful to everyone who contributed to these sources in any way,
including:

Those contributing to the Flutter Dev group on Google: https://
groups. google. com/ forum/

Those contributing to the Medium flutter community: https:// medium.
com/ flutter- community

https://groups.google.com/forum/
https://medium.com/flutter-community

Official Resources
The official Flutter website can be found at http:// flutter.io/ . In case
you want an offline copy, the source code is here: https:// github.
com/ flutter/ website . You can clone the repository. This is great if
you sometimes have to work without an internet connection.

“Cookbook.” Flutter.dev. Accessed July 2021. https:// flutter. dev/
docs/ cookbook .

“Dart2Native Tools.” Dart.cn. Accessed July 2021. https:// dart. cn/
tools/ dart2native .

“Dart Overview.” Dart.dev. Accessed July 2021. https:// dart. dev/
overview .

“Debugging Flutter Apps.” Flutter.dev. Accessed July 2021. https://
flutter. dev/ docs/ testing/ debugging .

“Flutter Build Release Channels.” GitHub. Accessed July 2021.
https:// github. com/ flutter/ flutter/ wiki/ Flutter- build- release-
channels .

Flutter by Example. Accessed July 2021. https://
flutterbyexample.com .

“Flutter Widget Index.” Accessed July 2021. https:// flutter. dev/ docs/
reference/ widgets .

FlutterFlow. Accessed July 2021. https://flutterflow.io .

“FlutterFlow Official Channel.” YouTube. Accessed July 2021. https://
youtube. com/ channel/ UC5LueiosDVInA6yXE_38i9Q

“Google Developers’ Channel.” YouTube. Accessed July 2021.
https:// www. youtube. com/ channel/
UC_x5XG1OV2P6uZZ5FSM9Ttw .

“Test Drive.” Flutter.dev. Accessed July 2021. https:// flutter. dev/
docs/ get- started/ test- drive .

http://flutter.io/
https://github.com/flutter/website
https://flutter.dev/docs/cookbook
https://dart.cn/tools/dart2native
https://dart.dev/overview
https://flutter.dev/docs/testing/debugging
https://github.com/flutter/flutter/wiki/Flutter-build-release-channels
https://flutterbyexample.com/
https://flutter.dev/docs/reference/widgets
https://flutterflow.io/
https://youtube.com/channel/UC5LueiosDVInA6yXE_38i9Q
https://www.youtube.com/channel/UC_x5XG1OV2P6uZZ5FSM9Ttw
https://flutter.dev/docs/get-started/test-drive

Other Resources
“Awesome Flutter Talks.” GitHub. Accessed July 2021. https://
github. com/ Rahiche/ awesome- flutter- talks .

Bizzotto, Andrea. “My Favoutire Lists of Flutter Resources.” Medium,
2018 December 3. https:// medium. com/ coding- with- flutter/ my-
favourite- list- of- flutter- resources- 523adc611cbe .

“Build a UI Login with Flutter.” Pusher. Accessed July 2021.
https://pusher.com/tutorials/login-ui-flutter .

“Dart Programming.” TutorialsPoint. Accessed July 2021. https://
www. tutorialspoint. com/ dart_programming

“Flutter.” GitHub. Accessed July 2021. https:// github. com/ flutter/
flutter .

“Flutter: Introduction to Dart and Programming.” Tutorials Point.
Accessed July 2021. https:// www. tutorialspoint. com/ flutter/
flutter_introduction_to_dart_programming.htm .

Gupta, Anmol. “Music Playing Using Flutter.” Medium, 2021 August
8. https:// medium. com/ flutterdevs/ music- player- using- flutter-
a803c939c967 .

Hiwarale, Uday. “Dart (DartLang) Introduction: Advanced Dart
Features.” Medium, 2019 October 7. https:// medium. com/ run- dart/
dart- dartlang- introduction- advanced- dart- features- 524de79456b9
.

“How to Release Your Flutter App for iOS and Android.” Instabug.
Accessed July 2021. https://instabug.com/blog/how-to-release-your-
flutter-app-for-ios-and-android .

Joshi, Devan. “The Complete Flutter Series: Exploring a Flutter
Project and Building Your First Flutter App.” Medium, 2018 June 28.
https:// medium. com/@ dev. n/ the- complete- flutter- series- article-
1- exploring- a- flutter- project- and- building- your- first- flutter-
e438ea941d70 .

https://github.com/Rahiche/awesome-flutter-talks
https://medium.com/coding-with-flutter/my-favourite-list-of-flutter-resources-523adc611cbe
https://pusher.com/tutorials/login-ui-flutter/
https://www.tutorialspoint.com/dart_programming
https://github.com/flutter/flutter
https://www.tutorialspoint.com/flutter/flutter_introduction_to_dart_programming.htm
https://medium.com/flutterdevs/music-player-using-flutter-a803c939c967
https://medium.com/run-dart/dart-dartlang-introduction-advanced-dart-features-524de79456b9
https://instabug.com/blog/how-to-release-your-flutter-app-for-ios-and-android/
https://medium.com/@dev.n/the-complete-flutter-series-article-1-exploring-a-flutter-project-and-building-your-first-flutter-e438ea941d70

Khan, Sara. “Create Your App with Flutter in 5 Days.” GitConnected,
31 March 2021. https:// levelup. gitconnected. com/ create- your-
app- with- flutter- in- 5- days- 412ee41de22a .

Martin, Gonzalo. “Flutter: Creating an App from Scratch.” Medium,
2018 July 2. https:// medium. com/@ gonzamartin87/ flutter-
creating- an- app- from- scratch- 561d069579#8601

Srivastava, Naveen. “Debugging in Flutter.” Medium, 2021 May 6.
https:// medium. com/ flutterdevs/ debugging- in- flutter-
fb34832e31b0 .

Suprastyo, Ecco. “Tutorial Ecommerce App Using Flutter.” 2020
January 23. https:// medium. com/@ ekosuprastyo15/ tutorial-
ecommerce- app- using- flutter- 96875d814c70

“What is Flutter? Benefits and Limitations.” Code Magic, 2019
January 18. https://blog.codemagic.io/what-is-flutter-benefits-and-
limitations .

https://levelup.gitconnected.com/create-your-app-with-flutter-in-5-days-412ee41de22a
https://medium.com/@gonzamartin87/flutter-creating-an-app-from-scratch-561d069579#8601
https://medium.com/flutterdevs/debugging-in-flutter-fb34832e31b0
https://medium.com/@ekosuprastyo15/tutorial-ecommerce-app-using-flutter-96875d814c70
https://blog.codemagic.io/what-is-flutter-benefits-and-limitations/

	Title Page
	Copyright
	Contents
	1. Welcome
	2. Basic Terminology
	3. Introduction To Dart
	4. Introduction To Flutter
	5. Installing Flutter 2.2
	6. Flutter Project 1 - Build Your First App
	7. Flutter Project 2 - Build a Song App
	8. Flutter Project 3 - Build a Login UI
	9. Flutter Project 4 - Build a Name Generator
	10. Flutter Project 5 - Build an Ecommerce App
	11. FlutterFlow Project 1 - Build a Threefold Pricing Scroll
	12. FlutterFlow Project 2 - Build a Chat App
	13. Flutter and HTTP
	14. Debugging
	15. Other Considerations
	16. Publishing Your App
	Final Words
	References

